311,407 research outputs found
Recombination in polymer-fullerene bulk heterojunction solar cells
Recombination of photogenerated charge carriers in polymer bulk
heterojunction (BHJ) solar cells reduces the short circuit current (Jsc) and
the fill factor (FF). Identifying the mechanism of recombination is, therefore,
fundamentally important for increasing the power conversion efficiency. Light
intensity and temperature dependent current-voltage measurements on polymer BHJ
cells made from a variety of different semiconducting polymers and fullerenes
show that the recombination kinetics are voltage dependent and evolve from
first order recombination at short circuit to bimolecular recombination at open
circuit as a result of increasing the voltage-dependent charge carrier density
in the cell. The "missing 0.3V" inferred from comparison of the band gaps of
the bulk heterojunction materials and the measured open circuit voltage at room
temperature results from the temperature dependence of the quasi-Fermi-levels
in the polymer and fullerene domains - a conclusion based upon the fundamental
statistics of Fermions.Comment: Accepted for publication in Physical Review B.
http://prb.aps.org/accepted/B/6b07cO3aHe71bd1b149e1425e58bf2868cda2384d?ajax=1&height=500&width=50
A theoretical analysis of the current-voltage characteristics of solar cells
The following topics are discussed: (1) dark current-voltage characteristics of solar cells; (2) high efficiency silicon solar cells; (3) short circuit current density as a function of temperature and the radiation intensity; (4) Keldysh-Franz effects and silicon solar cells; (5) thin silicon solar cells; (6) optimum solar cell designs for concentrated sunlight; (7) nonuniform illumination effects of a solar cell; and (8) high-low junction emitter solar cells
Suppression of Edge Recombination in InAs/InGaAs DWELL Solar Cells
The InAs/InGaAs DWELL solar cell grown by MBE is a standard pin diode
structure with six layers of InAs QDs embedded in InGaAs quantum wells placed
within a 200-nm intrinsic GaAs region. The GaAs control wafer consists of the
same pin configuration but without the DWELL structure. The typical DWELL solar
cell exhibits higher short current density while maintaining nearly the same
open-circuit voltage for different scales, and the advantage of higher short
current density is more obvious in the smaller cells. In contrast, the smaller
size cells, which have a higher perimeter to area ratio, make edge
recombination current dominant in the GaAs control cells, and thus their open
circuit voltage and efficiency severely degrade. The open-circuit voltage and
efficiency under AM1.5G of the GaAs control cell decrease from 0.914V and 8.85%
to 0.834V and 7.41%, respectively, as the size shrinks from 5*5mm2 to 2*2mm2,
compared to the increase from 0.665V and 7.04% to 0.675V and 8.17%,
respectively, in the DWELL solar cells
19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact.
We demonstrate an InP heterojunction solar cell employing an ultrathin layer (∼10 nm) of amorphous TiO2 deposited at 120 °C by atomic layer deposition as the transparent electron-selective contact. The TiO2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. A hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm2 and a high power conversion efficiency of 19.2%
Improving photovoltaic response of poly„3-hexylthiophene…/n-Si heterojunction by incorporating double walled carbon nanotubes
Poly(3-hexylthiophene)/n-Si heterojunction solar cells were studied with and without incorporation of double walled carbon nanotubes (DWCNs) in the polymer layer. Performance of the device improves by manyfold by incorporation of DWCN. The authors report power conversion efficiency, open circuit voltage, short-circuit current density, and fill factor of 0.026%, 0.446 V, 0.3398 mA/cm2, and 0.17, respectively, for an unoptimized cell containing DWCN. Reference cells without DWCNs show much lower performance. DWCN incorporation yields better hole transport, easy exciton splitting, and suppression of charge recombination, thereby improving photovoltaic action. DWCN seems promising materials for improving hole transport in organic solar cells
Improving the photovoltaic response of a poly(3-octylthiophene)/n-Si heterojunction by incorporating double-walled carbon nanotubes
Poly(3-octylthiophene)/n-Si heterojunction solar cells were studied with and without incorporation of double-walled carbon nanotubes (DWCNs) in the polymer layer. The performance of the device improves significantly by the incorporation of DWCNs. We report a power conversion efficiency, open circuit voltage, short-circuit current density and fill factor of 0.49%, 0.53 V, 5.9 mA cm−2 and 0.15 respectively for an un-optimized cell containing DWCNs. Reference cells without DWCNs show a much lower performance. DWCN incorporation yields better hole transport, easy exciton splitting and suppression of charge recombination, thereby improving photovoltaic action. DWCN seems a promising material for improving hole transport in organic solar cells
Demagnetization withstand capability enhancement of surface mounted PM machines using stator modularity
The flux gaps in alternate stator teeth of the modular PM machines can have a significant impact on the total magnet flux density, and hence, the potential magnet reversible/irreversible demagnetization under flux weakening operations or short-circuit conditions. Such a problem has not been studied in literature and will be investigated in this paper. The influence of flux gaps on the d-axis inductance and the potential peak short-circuit current is analysed for different slot/pole number combinations. It is found that the flux gaps will affect both the d-axis inductance and open-circuit flux linkage, and hence reduce short-circuit current of machines with pole number (2p) smaller than slot number (Ns) while they will increase the short-circuit current of machines with 2p > Ns. However, the opposite phenomena can be observed for demagnetization withstand capability. For machines having 2p Ns, this capability can be improved. Other parameters, such as magnet thickness, temperature, etc., have also been accounted for in the demagnetization analysis. Tests have been carried out to validate the predictions of inductances and short-circuit current as well as performance such as phase back-EMF, cogging torque and static torque for machines with one defective magnet, which represents the case of partially demagnetized magnets
Infrared Solution‐Processed Quantum Dot Solar Cells Reaching External Quantum Efficiency of 80% at 1.35 µm and Jsc in Excess of 34 mA cm−2
Developing low‐cost photovoltaic absorbers that can harvest the short‐wave infrared (SWIR) part of the solar spectrum, which remains unharnessed by current Si‐based and perovskite photovoltaic technologies, is a prerequisite for making high‐efficiency, low‐cost tandem solar cells. Here, infrared PbS colloidal quantum dot (CQD) solar cells employing a hybrid inorganic–organic ligand exchange process that results in an external quantum efficiency of 80% at 1.35 µm are reported, leading to a short‐circuit current density of 34 mA cm−2 and a power conversion efficiency (PCE) up to 7.9%, which is a current record for SWIR CQD solar cells. When this cell is placed at the back of an MAPbI3 perovskite film, it delivers an extra 3.3% PCE by harnessing light beyond 750 nm.Peer ReviewedPostprint (author's final draft
- …
