109 research outputs found

    Short proofs of the Quantum Substate Theorem

    Full text link
    The Quantum Substate Theorem due to Jain, Radhakrishnan, and Sen (2002) gives us a powerful operational interpretation of relative entropy, in fact, of the observational divergence of two quantum states, a quantity that is related to their relative entropy. Informally, the theorem states that if the observational divergence between two quantum states rho, sigma is small, then there is a quantum state rho' close to rho in trace distance, such that rho' when scaled down by a small factor becomes a substate of sigma. We present new proofs of this theorem. The resulting statement is optimal up to a constant factor in its dependence on observational divergence. In addition, the proofs are both conceptually simpler and significantly shorter than the earlier proof.Comment: 11 pages. Rewritten; included new references; presented the results in terms of smooth relative min-entropy; stronger results; included converse and proof using SDP dualit

    Equivalence of Statistical Mechanical Ensembles for Non-Critical Quantum Systems

    Get PDF
    We consider the problem of whether the canonical and microcanonical ensembles are locally equivalent for short-ranged quantum Hamiltonians of NN spins arranged on a dd-dimensional lattices. For any temperature for which the system has a finite correlation length, we prove that the canonical and microcanonical state are approximately equal on regions containing up to O(N1/(d+1))O(N^{1/(d+1)}) spins. The proof rests on a variant of the Berry--Esseen theorem for quantum lattice systems and ideas from quantum information theory

    Exponential Decay of Correlations Implies Area Law

    Full text link
    We prove that a finite correlation length, i.e. exponential decay of correlations, implies an area law for the entanglement entropy of quantum states defined on a line. The entropy bound is exponential in the correlation length of the state, thus reproducing as a particular case Hastings proof of an area law for groundstates of 1D gapped Hamiltonians. As a consequence, we show that 1D quantum states with exponential decay of correlations have an efficient classical approximate description as a matrix product state of polynomial bond dimension, thus giving an equivalence between injective matrix product states and states with a finite correlation length. The result can be seen as a rigorous justification, in one dimension, of the intuition that states with exponential decay of correlations, usually associated with non-critical phases of matter, are simple to describe. It also has implications for quantum computing: It shows that unless a pure state quantum computation involves states with long-range correlations, decaying at most algebraically with the distance, it can be efficiently simulated classically. The proof relies on several previous tools from quantum information theory - including entanglement distillation protocols achieving the hashing bound, properties of single-shot smooth entropies, and the quantum substate theorem - and also on some newly developed ones. In particular we derive a new bound on correlations established by local random measurements, and we give a generalization to the max-entropy of a result of Hastings concerning the saturation of mutual information in multiparticle systems. The proof can also be interpreted as providing a limitation on the phenomenon of data hiding in quantum states.Comment: 35 pages, 6 figures; v2 minor corrections; v3 published versio
    corecore