93,395 research outputs found

    Short Cycle Covers of Cubic Graphs and Graphs with Minimum Degree Three

    Full text link
    The Shortest Cycle Cover Conjecture of Alon and Tarsi asserts that the edges of every bridgeless graph with mm edges can be covered by cycles of total length at most 7m/5=1.400m7m/5=1.400m. We show that every cubic bridgeless graph has a cycle cover of total length at most 34m/211.619m34m/21\approx 1.619m and every bridgeless graph with minimum degree three has a cycle cover of total length at most 44m/271.630m44m/27\approx 1.630m

    Some snarks are worse than others

    Full text link
    Many conjectures and open problems in graph theory can either be reduced to cubic graphs or are directly stated for cubic graphs. Furthermore, it is known that for a lot of problems, a counterexample must be a snark, i.e. a bridgeless cubic graph which is not 3--edge-colourable. In this paper we deal with the fact that the family of potential counterexamples to many interesting conjectures can be narrowed even further to the family S5{\cal S}_{\geq 5} of bridgeless cubic graphs whose edge set cannot be covered with four perfect matchings. The Cycle Double Cover Conjecture, the Shortest Cycle Cover Conjecture and the Fan-Raspaud Conjecture are examples of statements for which S5{\cal S}_{\geq 5} is crucial. In this paper, we study parameters which have the potential to further refine S5{\cal S}_{\geq 5} and thus enlarge the set of cubic graphs for which the mentioned conjectures can be verified. We show that S5{\cal S}_{\geq 5} can be naturally decomposed into subsets with increasing complexity, thereby producing a natural scale for proving these conjectures. More precisely, we consider the following parameters and questions: given a bridgeless cubic graph, (i) how many perfect matchings need to be added, (ii) how many copies of the same perfect matching need to be added, and (iii) how many 2--factors need to be added so that the resulting regular graph is Class I? We present new results for these parameters and we also establish some strong relations between these problems and some long-standing conjectures.Comment: 27 pages, 16 figure

    Construction of cycle double covers for certain classes of graphs

    Get PDF
    We introduce two classes of graphs, Indonesian graphs and kk-doughnut graphs. Cycle double covers are constructed for these classes. In case of doughnut graphs this is done for the values k=1,2,3k=1,2,3 and 4
    corecore