8 research outputs found

    Existence of chaos in the Chen system with linear time-delay feedback

    Get PDF
    Peer reviewedPostprin

    Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion

    Full text link
    In this tutorial, we discuss self-excited and hidden attractors for systems of differential equations. We considered the example of a Lorenz-like system derived from the well-known Glukhovsky--Dolghansky and Rabinovich systems, to demonstrate the analysis of self-excited and hidden attractors and their characteristics. We applied the fishing principle to demonstrate the existence of a homoclinic orbit, proved the dissipativity and completeness of the system, and found absorbing and positively invariant sets. We have shown that this system has a self-excited attractor and a hidden attractor for certain parameters. The upper estimates of the Lyapunov dimension of self-excited and hidden attractors were obtained analytically.Comment: submitted to EP

    Chaos in Essentially Singular 3D Dynamical Systems with Two Quadratic Nonlinearities

    Get PDF

    Research of Chaotic Dynamics of 3D Autonomous Quadratic Systems by Their Reduction to Special 2D Quadratic Systems

    Get PDF
    New results about the existence of chaotic dynamics in the quadratic 3D systems are derived. These results are based on the method allowing studying dynamics of 3D system of autonomous quadratic differential equations with the help of reduction of this system to the special 2D quadratic system of differential equations
    corecore