2 research outputs found

    Superposition as memory: unlocking quantum automatic complexity

    Full text link
    Imagine a lock with two states, "locked" and "unlocked", which may be manipulated using two operations, called 0 and 1. Moreover, the only way to (with certainty) unlock using four operations is to do them in the sequence 0011, i.e., 0n1n0^n1^n where n=2n=2. In this scenario one might think that the lock needs to be in certain further states after each operation, so that there is some memory of what has been done so far. Here we show that this memory can be entirely encoded in superpositions of the two basic states "locked" and "unlocked", where, as dictated by quantum mechanics, the operations are given by unitary matrices. Moreover, we show using the Jordan--Schur lemma that a similar lock is not possible for n=60n=60. We define the semi-classical quantum automatic complexity Qs(x)Q_{s}(x) of a word xx as the infimum in lexicographic order of those pairs of nonnegative integers (n,q)(n,q) such that there is a subgroup GG of the projective unitary group PU(n)(n) with Gq|G|\le q and with U0,U1GU_0,U_1\in G such that, in terms of a standard basis {ek}\{e_k\} and with Uz=kUz(k)U_z=\prod_k U_{z(k)}, we have Uxe1=e2U_x e_1=e_2 and Uye1e2U_y e_1 \ne e_2 for all yxy\ne x with y=x|y|=|x|. We show that QsQ_s is unbounded and not constant for strings of a given length. In particular, Qs(0212)(2,12)<(3,1)Qs(060160) Q_{s}(0^21^2)\le (2,12) < (3,1) \le Q_{s}(0^{60}1^{60}) and Qs(0120)(2,121)Q_s(0^{120})\le (2,121).Comment: Lecture Notes in Computer Science, UCNC (Unconventional Computation and Natural Computation) 201
    corecore