116,325 research outputs found
Evaluation of Shear Wall-RC Frame Interaction of High-Rise Buildings using 2-D model Approach
The usefulness of structural walls in the framing of buildings has long been recognized. It is generally preferred to use shear wall in combination with moment resisting frame. In the present study, an effort is also made to investigate the shear wall-RC frame interaction using 2-D modeling of 20, 30 and 35 storey RC frame building with shear wall. In equivalent simplified 2-D model, two exterior frames with shear wall modeled as single frame with double stiffness, strength and weight. The interior frames without shear wall are modeled as a single frame with equivalent stiffness, strength and weight. The modeled frames are connected with rigid link at each floor level. Using 2-D plane frame model the lateral force distribution between Exterior frame with shear wall and Interior frame without shear wall is investigated. From the analysis, it is observed that up to bottom seven/eight storey more than 50% load is taken by frame with shear wall and the lower most three storeys take about 75% of total storey shear
Seismic Response of a Platform-Frame System with Steel Columns
Timber platform-frame shear walls are characterized by high ductility and diffuse energy dissipation but limited in-plane shear resistance. A novel lightweight constructive system composed of steel columns braced with oriented strand board (OSB) panels was conceived and tested. Preliminary laboratory tests were performed to study the OSB-to-column connections with self-drilling screws. Then, the seismic response of a shear wall was determined performing a quasi-static cyclic-loading test of a full-scale specimen. Results presented in this work in terms of force-displacement capacity show that this system confers to shear walls high in-plane strength and stiffness with good ductility and dissipative capacity. Therefore, the incorporation of steel columns within OSB bracing panels results in a strong and stiff platform-frame system with high potential for low- and medium-rise buildings in seismic-prone areas
Real time visualization and analysis of sensory hair arrays using fast image processing and proper orthogonal decomposition
This paper presents an approach both to receiving multiple sensor data from a flow in real time and to analyzing these data in order to characterize the flow condition and, if necessary, control the flow. In order to obtain the data, an optical micro-pillar array acting as distributed wall-shear sensor was developed and interrogated optically with an LDM (long distance microscope). Together, the micro-pillar array and the LDM form a channeling optics, which allows magnified imaging of larger numbers of individual pillars simultaneously. The sensor was tested in a turbulent wall shear stress field under varying conditions (Reynolds number). A frame rate of 3000 fps was used since the higher the temporal resolution is, the more specific flow control strategies might be applied later in realistic application. However, the temporal high resolution would lead to a vast amount of data, which is difficult to analyze in real time. Therefore, a fast image processing algorithm is developed, which detects the tip deflections of the pillars and vectorizes the wall-shear stress field online. The extracted data fields are then broken down into equidistant and overlapping windows in order to guarantee fast POD (proper orthogonal decomposition) modes calculation. The POD is applied to each of these windows and the extracted modes are compared, summarized and collected in a library. Finally, this library is again applied to the flow but under different conditions in order to identify the state of the current flow in real time
Modelling shear-flexure interaction in equivalent frame models of slender RC walls
Quasi-static cyclic tests on reinforced concrete (RC) walls have shown that shear deformations can constitute a significant ratio of the total deformations when the wall is loaded beyond the elastic regime. For slender RC walls that form a stable flexural mechanism, the ratio of shear to flexural deformations remains approximately constant over the entire range of imposed displacement ductilities. This paper proposes a method for incorporating shear-flexure interaction effects in equivalent frame models of slender RC walls by coupling the shear force-shear strain relationship to the curvature and axial strain in the member. The suggested methodology is incorporated in a finite element consisting of two interacting spread inelasticity sub-elements representing flexural and shear response, respectively. The element is implemented in the general finite element code IDARC and validated against experimental results of RC cantilever walls. In a second step, it is applied in inelastic static and dynamic analyses of tall wall and wall-frame systems. It is shown that ignoring shear-flexure interaction may lead to erroneous predictions in particular of local ductility and storey drift demands
Seismic Response Evaluation of Reinforced Structure with Embedded Viscous Damper in Shear Wall.
Recently implementation of viscous damper devices as seismic energy dissipation attracts a lot of civil engineer interested due to effect of dampers in diminishing of earthquake loading. Furthermore along lateral load resistance systems, shear wall has better resistance performance by providing enough stiffness to the structure. But the overall weight of building is dramatically increased whenever shear walls are used as lateral resistance system. So, in present study an attempt has been made to evaluate seismic response of reinforced concrete structure which is equipped with viscous damper inside of shear walls. So, seismic response assessment carried out by aid of time history analysis and the results emerged in terms of average story displacement, axial force, moment and torsion in critical elements. Various models with different shear wall arrangement and embedded viscous damper layouts were subjected to earthquake excitation and response investigated. The results indicated that the best performance achieved when the viscous damper located at the top of the shear wall frame structure with the highest reduction percentage of axial forces, moment at the base of the shear wall, torsion and base shear values
Relation between plaque type, plaque thickness, blood shear stress, and plaque stress in coronary arteries assessed by X-ray Angiography and Intravascular Ultrasound
Purpose: Atheromatic plaque progression is affected, among others phenomena, by biomechanical, biochemical, and physiological factors. In this paper, the authors introduce a novel framework able to provide both morphological (vessel radius, plaque thickness, and type) and biomechanical (wall shear stress and Von Mises stress) indices of coronary arteries. Methods: First, the approach reconstructs the three-dimensional morphology of the vessel from intravascular ultrasound(IVUS) and Angiographic sequences, requiring minimal user interaction. Then, a computational pipeline allows to automatically assess fluid-dynamic and mechanical indices. Ten coronary arteries are analyzed illustrating the capabilities of the tool and confirming previous technical and clinical observations. Results: The relations between the arterial indices obtained by IVUS measurement and simulations have been quantitatively analyzed along the whole surface of the artery, extending the analysis of the coronary arteries shown in previous state of the art studies. Additionally, for the first time in the literature, the framework allows the computation of the membrane stresses using a simplified mechanical model of the arterial wall. Conclusions: Circumferentially (within a given frame), statistical analysis shows an inverse relation between the wall shear stress and the plaque thickness. At the global level (comparing a frame within the entire vessel), it is observed that heavy plaque accumulations are in general calcified and are located in the areas of the vessel having high wall shear stress. Finally, in their experiments the inverse proportionality between fluid and structural stresses is observed
Shake-table tests of large-scale shear wall and infilled frame models
Three different types of wall construction scale models were tested dynamically to ultimate failure by subjecting each of them to a sequence of simulated earthquakes of progressively increasing magnitudes on a 5 m×5 m shaking table in order to evaluate and compare their seismic performance. The three models tested are: a reinforced concrete shear wall structure; a masonry infilled reinforced concrete frame structure; and a concrete infilled steel frame structure, all having the same dimensions and designed to represent typical wall constructions. From the shake table and small amplitude vibration tests, the seismic behavior, damage characteristics, structural degradations and dynamic shear strengths, etc., of the models are studied and compared.published_or_final_versio
- …
