3 research outputs found

    The General Apple Property and Boolean terms in Integral Bounded Residuated Lattice-ordered Commutative Monoids

    Full text link
    In this paper we give equational presentations of the varieties of {\em integral bounded residuated lattice-ordered commutative monoids} (bounded residuated lattices for short) satisfying the \emph{General Apple Property} (GAP), that is, varieties in which all of its directly indecomposable members are local. This characterization is given by means of Boolean terms: \emph{A variety V\mathsf{V} of \brl s has GAP iff there is an unary term b(x)b(x) such that V\mathsf{V} satisfies the equations b(x)∨¬b(x)≈⊤b(x)\lor\neg b(x)\approx \top and (xk→b(x))⋅(b(x)→k.x)≈⊤(x^k\to b(x))\cdot(b(x)\to k.x)\approx \top, for some k>0k>0}. Using this characterization, we show that for any variety V\mathsf{V} of bounded residuated lattice satisfying GAP there is k>0k>0 such that the equation k.x∨k.¬x≈⊤k.x\lor k.\neg x\approx \top holds in V\mathsf{V}, that is, V⊆WLk\mathsf{V} \subseteq \mathsf{WL_\mathsf{k}}. As a consequence we improve Theorem 5.7 of \cite{CT12}, showing in theorem that a\emph{ variety of \brls\ has Boolean retraction term if and only if there is k>0k>0 such that it satisfies the equation k.xk∨k.(¬k)n≈⊤k.x^k\lor k.(\neg k)^n\approx\top.} We also see that in Bounded residuated lattices GAP is equivalent to Boolean lifting property (BLP) and so, it is equivalent to quasi-local property (in the sense of \cite{GLM12}). Finally, we prove that a variety of \brl s has GAP and its semisimple members form a variety if and only if there exists an unary term which is simultaneously Boolean and radical for this variety.Comment: 25 pages, 1 figure, 2 table

    Sheaf representations of BL-algebras

    No full text
    corecore