2 research outputs found

    Provably Robust Blackbox Optimization for Reinforcement Learning

    Full text link
    Interest in derivative-free optimization (DFO) and "evolutionary strategies" (ES) has recently surged in the Reinforcement Learning (RL) community, with growing evidence that they can match state of the art methods for policy optimization problems in Robotics. However, it is well known that DFO methods suffer from prohibitively high sampling complexity. They can also be very sensitive to noisy rewards and stochastic dynamics. In this paper, we propose a new class of algorithms, called Robust Blackbox Optimization (RBO). Remarkably, even if up to 23%23\% of all the measurements are arbitrarily corrupted, RBO can provably recover gradients to high accuracy. RBO relies on learning gradient flows using robust regression methods to enable off-policy updates. On several MuJoCo robot control tasks, when all other RL approaches collapse in the presence of adversarial noise, RBO is able to train policies effectively. We also show that RBO can be applied to legged locomotion tasks including path tracking for quadruped robots

    ISLET: Fast and Optimal Low-rank Tensor Regression via Importance Sketching

    Full text link
    In this paper, we develop a novel procedure for low-rank tensor regression, namely \emph{\underline{I}mportance \underline{S}ketching \underline{L}ow-rank \underline{E}stimation for \underline{T}ensors} (ISLET). The central idea behind ISLET is \emph{importance sketching}, i.e., carefully designed sketches based on both the responses and low-dimensional structure of the parameter of interest. We show that the proposed method is sharply minimax optimal in terms of the mean-squared error under low-rank Tucker assumptions and under randomized Gaussian ensemble design. In addition, if a tensor is low-rank with group sparsity, our procedure also achieves minimax optimality. Further, we show through numerical study that ISLET achieves comparable or better mean-squared error performance to existing state-of-the-art methods while having substantial storage and run-time advantages including capabilities for parallel and distributed computing. In particular, our procedure performs reliable estimation with tensors of dimension p=O(108)p = O(10^8) and is 11 or 22 orders of magnitude faster than baseline methods
    corecore