4 research outputs found

    Sharp Upper Bounds on the Signless Laplacian Spectral Radius of Strongly Connected Digraphs

    No full text
    Let G = (V (G),E(G)) be a simple strongly connected digraph and q(G) be the signless Laplacian spectral radius of G. For any vertex vi ∈ V (G), let d+i denote the outdegree of vi, m+i denote the average 2-outdegree of vi, and N+i denote the set of out-neighbors of vi. In this paper, we prove that

    Sharp upper bounds on the signless Laplacian spectral radius of strongly connected digraphs

    No full text

    Sharp Upper Bounds on the Signless Laplacian Spectral Radius of Strongly Connected Digraphs

    No full text
    Let G=(V(G),E(G)) G = (V (G),E(G)) be a simple strongly connected digraph and q(G) q(G) be the signless Laplacian spectral radius of G G . For any vertex vi∈V(G) v_i \in V (G) , let d+i d+i denote the outdegree of vi v_i , mi+ m_i^+ denote the average 2-outdegree of vi v_i , and Ni+ N_i^+ denote the set of out-neighbors of vi v_i . In this paper, we prove that: (1) q(G)=d1++d2+,(d1+β‰ d2+) q(G) = d_1^+ + d_2^+, (d_1^+ \ne d_2^+ ) if and only if G G is a star digraph K↔1,nβˆ’1 \overleftrightarrow{K}_{1,n-1} , where d1+ d_1^+ , d2+ d_2^+ are the maximum and the second maximum outdegree, respectively (K↔1,nβˆ’1 \overleftrightarrow{K}_{1,n-1} is the digraph on n n vertices obtained from a star graph K1,nβˆ’1 K_{1,nβˆ’1} by replacing each edge with a pair of oppositely directed arcs). (2) q(G)≀max{12(di++di+2+8di+mi+):vi∈V(G)} q(G) \le \text{max} \bigg\{ \frac{1}{2} \left( d_i^+ + \sqrt{ { d_i^+ }^2 + 8d_i^+ m_i^+ } \right) : v_i \in V(G) \bigg\} with equality if and only if G G is a regular digraph. (3) q(G)≀max{12(di++di+2+4di+βˆ‘vj∈Ni+dj+(dj++mj+)):vi∈V(G)} q(G) \le \text{max} \bigg\{ \frac{1}{2} \left( d_i^+ + \sqrt{ {d_i^+}^2 + \frac{4}{d_i^+} \sum_{v_j \in N_i^+ } d_j^+ ( d_j^+ + m_j^+ ) } \right) : v_i \in V(G) \bigg\} . Moreover, the equality holds if and only if G G is a regular digraph or a bipartite semiregular digraph. (4) q(G)≀max{12(di++2dj+βˆ’1+(di+βˆ’2dj++1)2+4di+):(vj,vi)∈E(G)} q(G) \le \text{max} \big\{ \frac{1}{2} \left( d_i^+ + 2d_j^+ - 1 + \sqrt{ ( d_i^+ - 2d_j^+ + 1 )^2 + 4d_i^+ } \right) : ( v_j, v_i ) \in E(G) \big\} . If the equality holds, then G G is a regular digraph or G∈Ω G \in \Omega , where Ξ© \Omega is a class of digraphs defined in this paper
    corecore