3 research outputs found

    Sharp asymptotics of the Lp approximation error for interpolation on block partitions

    Get PDF
    Adaptive approximation (or interpolation) takes into account local variations in the behavior of the given function, adjusts the approximant depending on it, and hence yields the smaller error of approximation. The question of constructing optimal approximating spline for each function proved to be very hard. In fact, no polynomial time algorithm of adaptive spline approximation can be designed and no exact formula for the optimal error of approximation can be given. Therefore, the next natural question would be to study the asymptotic behavior of the error and construct asymptotically optimal sequences of partitions. In this paper we provide sharp asymptotic estimates for the error of interpolation by splines on block partitions in IRd. We consider various projection operators to define the interpolant and provide the analysis of the exact constant in the asymptotics as well as its explicit form in certain cases.Comment: 20 pages, 1 figur

    Optimally Adapted Meshes for Finite Elements of Arbitrary Order and W1p Norms

    Full text link
    Given a function f defined on a bidimensional bounded domain and a positive integer N, we study the properties of the triangulation that minimizes the distance between f and its interpolation on the associated finite element space, over all triangulations of at most N elements. The error is studied in the W1p norm and we consider Lagrange finite elements of arbitrary polynomial order m-1. We establish sharp asymptotic error estimates as N tends to infinity when the optimal anisotropic triangulation is used. A similar problem has been studied earlier, but with the error measured in the Lp norm. The extension of this analysis to the W1p norm is crucial in order to match more closely the needs of numerical PDE analysis, and it is not straightforward. In particular, the meshes which satisfy the optimal error estimate are characterized by a metric describing the local aspect ratio of each triangle and by a geometric constraint on their maximal angle, a second feature that does not appear for the Lp error norm. Our analysis also provides with practical strategies for designing meshes such that the interpolation error satisfies the optimal estimate up to a fixed multiplicative constant. We discuss the extension of our results to finite elements on simplicial partitions of a domain of arbitrary dimension, and we provide with some numerical illustration in two dimensions.Comment: 37 pages, 6 figure
    corecore