31,318 research outputs found

    Sharp Attention Network via Adaptive Sampling for Person Re-identification

    Full text link
    In this paper, we present novel sharp attention networks by adaptively sampling feature maps from convolutional neural networks (CNNs) for person re-identification (re-ID) problem. Due to the introduction of sampling-based attention models, the proposed approach can adaptively generate sharper attention-aware feature masks. This greatly differs from the gating-based attention mechanism that relies soft gating functions to select the relevant features for person re-ID. In contrast, the proposed sampling-based attention mechanism allows us to effectively trim irrelevant features by enforcing the resultant feature masks to focus on the most discriminative features. It can produce sharper attentions that are more assertive in localizing subtle features relevant to re-identifying people across cameras. For this purpose, a differentiable Gumbel-Softmax sampler is employed to approximate the Bernoulli sampling to train the sharp attention networks. Extensive experimental evaluations demonstrate the superiority of this new sharp attention model for person re-ID over the other state-of-the-art methods on three challenging benchmarks including CUHK03, Market-1501, and DukeMTMC-reID.Comment: accepted by IEEE Transactions on Circuits and Systems for Video Technology(T-CSVT

    When Autonomous Systems Meet Accuracy and Transferability through AI: A Survey

    Full text link
    With widespread applications of artificial intelligence (AI), the capabilities of the perception, understanding, decision-making and control for autonomous systems have improved significantly in the past years. When autonomous systems consider the performance of accuracy and transferability, several AI methods, like adversarial learning, reinforcement learning (RL) and meta-learning, show their powerful performance. Here, we review the learning-based approaches in autonomous systems from the perspectives of accuracy and transferability. Accuracy means that a well-trained model shows good results during the testing phase, in which the testing set shares a same task or a data distribution with the training set. Transferability means that when a well-trained model is transferred to other testing domains, the accuracy is still good. Firstly, we introduce some basic concepts of transfer learning and then present some preliminaries of adversarial learning, RL and meta-learning. Secondly, we focus on reviewing the accuracy or transferability or both of them to show the advantages of adversarial learning, like generative adversarial networks (GANs), in typical computer vision tasks in autonomous systems, including image style transfer, image superresolution, image deblurring/dehazing/rain removal, semantic segmentation, depth estimation, pedestrian detection and person re-identification (re-ID). Then, we further review the performance of RL and meta-learning from the aspects of accuracy or transferability or both of them in autonomous systems, involving pedestrian tracking, robot navigation and robotic manipulation. Finally, we discuss several challenges and future topics for using adversarial learning, RL and meta-learning in autonomous systems

    cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600 Papers Survey

    Full text link
    The paper gives futuristic challenges disscussed in the cvpaper.challenge. In 2015 and 2016, we thoroughly study 1,600+ papers in several conferences/journals such as CVPR/ICCV/ECCV/NIPS/PAMI/IJCV

    Metric Attack and Defense for Person Re-identification

    Full text link
    Person re-identification (re-ID) has attracted much attention recently due to its great importance in video surveillance. In general, distance metrics used to identify two person images are expected to be robust under various appearance changes. However, our work observes the extreme vulnerability of existing distance metrics to adversarial examples, generated by simply adding human-imperceptible perturbations to person images. Hence, the security danger is dramatically increased when deploying commercial re-ID systems in video surveillance. Although adversarial examples have been extensively applied for classification analysis, it is rarely studied in metric analysis like person re-identification. The most likely reason is the natural gap between the training and testing of re-ID networks, that is, the predictions of a re-ID network cannot be directly used during testing without an effective metric. In this work, we bridge the gap by proposing Adversarial Metric Attack, a parallel methodology to adversarial classification attacks. Comprehensive experiments clearly reveal the adversarial effects in re-ID systems. Meanwhile, we also present an early attempt of training a metric-preserving network, thereby defending the metric against adversarial attacks. At last, by benchmarking various adversarial settings, we expect that our work can facilitate the development of adversarial attack and defense in metric-based applications

    Identification of homophily and preferential recruitment in respondent-driven sampling

    Full text link
    Respondent-driven sampling (RDS) is a link-tracing procedure for surveying hidden or hard-to-reach populations in which subjects recruit other subjects via their social network. There is significant research interest in detecting clustering or dependence of epidemiological traits in networks, but researchers disagree about whether data from RDS studies can reveal it. Two distinct mechanisms account for dependence in traits of recruiters and recruitees in an RDS study: homophily, the tendency for individuals to share social ties with others exhibiting similar characteristics, and preferential recruitment, in which recruiters do not recruit uniformly at random from their available alters. The different effects of network homophily and preferential recruitment in RDS studies have been a source of confusion in methodological research on RDS, and in empirical studies of the social context of health risk in hidden populations. In this paper, we give rigorous definitions of homophily and preferential recruitment and show that neither can be measured precisely in general RDS studies. We derive nonparametric identification regions for homophily and preferential recruitment and show that these parameters are not point identified unless the network takes a degenerate form. The results indicate that claims of homophily or recruitment bias measured from empirical RDS studies may not be credible. We apply our identification results to a study involving both a network census and RDS on a population of injection drug users in Hartford, CT

    Privacy-Protective-GAN for Face De-identification

    Full text link
    Face de-identification has become increasingly important as the image sources are explosively growing and easily accessible. The advance of new face recognition techniques also arises people's concern regarding the privacy leakage. The mainstream pipelines of face de-identification are mostly based on the k-same framework, which bears critiques of low effectiveness and poor visual quality. In this paper, we propose a new framework called Privacy-Protective-GAN (PP-GAN) that adapts GAN with novel verificator and regulator modules specially designed for the face de-identification problem to ensure generating de-identified output with retained structure similarity according to a single input. We evaluate the proposed approach in terms of privacy protection, utility preservation, and structure similarity. Our approach not only outperforms existing face de-identification techniques but also provides a practical framework of adapting GAN with priors of domain knowledge

    CaseNet: Content-Adaptive Scale Interaction Networks for Scene Parsing

    Full text link
    Objects in an image exhibit diverse scales. Adaptive receptive fields are expected to catch suitable range of context for accurate pixel level semantic prediction for handling objects of diverse sizes. Recently, atrous convolution with different dilation rates has been used to generate features of multi-scales through several branches and these features are fused for prediction. However, there is a lack of explicit interaction among the branches to adaptively make full use of the contexts. In this paper, we propose a Content-Adaptive Scale Interaction Network (CaseNet) to exploit the multi-scale features for scene parsing. We build the CaseNet based on the classic Atrous Spatial Pyramid Pooling (ASPP) module, followed by the proposed contextual scale interaction (CSI) module, and the scale adaptation (SA) module. Specifically, first, for each spatial position, we enable context interaction among different scales through scale-aware non-local operations across the scales, \ie, CSI module, which facilitates the generation of flexible mixed receptive fields, instead of a traditional flat one. Second, the scale adaptation module (SA) explicitly and softly selects the suitable scale for each spatial position and each channel. Ablation studies demonstrate the effectiveness of the proposed modules. We achieve state-of-the-art performance on three scene parsing benchmarks Cityscapes, ADE20K and LIP

    Bridging the Gap Between Computational Photography and Visual Recognition

    Full text link
    What is the current state-of-the-art for image restoration and enhancement applied to degraded images acquired under less than ideal circumstances? Can the application of such algorithms as a pre-processing step to improve image interpretability for manual analysis or automatic visual recognition to classify scene content? While there have been important advances in the area of computational photography to restore or enhance the visual quality of an image, the capabilities of such techniques have not always translated in a useful way to visual recognition tasks. Consequently, there is a pressing need for the development of algorithms that are designed for the joint problem of improving visual appearance and recognition, which will be an enabling factor for the deployment of visual recognition tools in many real-world scenarios. To address this, we introduce the UG^2 dataset as a large-scale benchmark composed of video imagery captured under challenging conditions, and two enhancement tasks designed to test algorithmic impact on visual quality and automatic object recognition. Furthermore, we propose a set of metrics to evaluate the joint improvement of such tasks as well as individual algorithmic advances, including a novel psychophysics-based evaluation regime for human assessment and a realistic set of quantitative measures for object recognition performance. We introduce six new algorithms for image restoration or enhancement, which were created as part of the IARPA sponsored UG^2 Challenge workshop held at CVPR 2018. Under the proposed evaluation regime, we present an in-depth analysis of these algorithms and a host of deep learning-based and classic baseline approaches. From the observed results, it is evident that we are in the early days of building a bridge between computational photography and visual recognition, leaving many opportunities for innovation in this area.Comment: CVPR Prize Challenge: http://www.ug2challenge.or

    Face Recognition in Low Quality Images: A Survey

    Full text link
    Low-resolution face recognition (LRFR) has received increasing attention over the past few years. Its applications lie widely in the real-world environment when high-resolution or high-quality images are hard to capture. One of the biggest demands for LRFR technologies is video surveillance. As the the number of surveillance cameras in the city increases, the videos that captured will need to be processed automatically. However, those videos or images are usually captured with large standoffs, arbitrary illumination condition, and diverse angles of view. Faces in these images are generally small in size. Several studies addressed this problem employed techniques like super resolution, deblurring, or learning a relationship between different resolution domains. In this paper, we provide a comprehensive review of approaches to low-resolution face recognition in the past five years. First, a general problem definition is given. Later, systematically analysis of the works on this topic is presented by catogory. In addition to describing the methods, we also focus on datasets and experiment settings. We further address the related works on unconstrained low-resolution face recognition and compare them with the result that use synthetic low-resolution data. Finally, we summarized the general limitations and speculate a priorities for the future effort.Comment: There are some mistakes addressing in this paper which will be misleading to the reader and we wont have a new version in short time. We will resubmit once it is being corecte

    Recent Advances and Challenges in Ubiquitous Sensing

    Full text link
    Ubiquitous sensing is tightly coupled with activity recognition. This survey reviews recent advances in Ubiquitous sensing and looks ahead on promising future directions. In particular, Ubiquitous sensing crosses new barriers giving us new ways to interact with the environment or to inspect our psyche. Through sensing paradigms that parasitically utilise stimuli from the noise of environmental, third-party pre-installed systems, sensing leaves the boundaries of the personal domain. Compared to previous environmental sensing approaches, these new systems mitigate high installation and placement cost by providing a robustness towards process noise. On the other hand, sensing focuses inward and attempts to capture mental activities such as cognitive load, fatigue or emotion through advances in, for instance, eye-gaze sensing systems or interpretation of body gesture or pose. This survey summarises these developments and discusses current research questions and promising future directions.Comment: Submitted to PIEE
    corecore