7,930 research outputs found

    Multiparty Quantum Secret Sharing

    Full text link
    Based on a quantum secure direct communication (QSDC) protocol [Phys. Rev. A69(04)052319], we propose a (n,n)(n,n)-threshold scheme of multiparty quantum secret sharing of classical messages (QSSCM) using only single photons. We take advantage of this multiparty QSSCM scheme to establish a scheme of multiparty secret sharing of quantum information (SSQI), in which only all quantum information receivers collaborate can the original qubit be reconstructed. A general idea is also proposed for constructing multiparty SSQI schemes from any QSSCM scheme

    Implementation vulnerabilities in general quantum cryptography

    Full text link
    Quantum cryptography is information-theoretically secure owing to its solid basis in quantum mechanics. However, generally, initial implementations with practical imperfections might open loopholes, allowing an eavesdropper to compromise the security of a quantum cryptographic system. This has been shown to happen for quantum key distribution (QKD). Here we apply experience from implementation security of QKD to several other quantum cryptographic primitives. We survey quantum digital signatures, quantum secret sharing, source-independent quantum random number generation, quantum secure direct communication, and blind quantum computing. We propose how the eavesdropper could in principle exploit the loopholes to violate assumptions in these protocols, breaking their security properties. Applicable countermeasures are also discussed. It is important to consider potential implementation security issues early in protocol design, to shorten the path to future applications.Comment: 13 pages, 8 figure

    Multi-party Quantum Computation

    Get PDF
    We investigate definitions of and protocols for multi-party quantum computing in the scenario where the secret data are quantum systems. We work in the quantum information-theoretic model, where no assumptions are made on the computational power of the adversary. For the slightly weaker task of verifiable quantum secret sharing, we give a protocol which tolerates any t < n/4 cheating parties (out of n). This is shown to be optimal. We use this new tool to establish that any multi-party quantum computation can be securely performed as long as the number of dishonest players is less than n/6.Comment: Masters Thesis. Based on Joint work with Claude Crepeau and Daniel Gottesman. Full version is in preparatio

    Some Directions beyond Traditional Quantum Secret Sharing

    Full text link
    We investigate two directions beyond the traditional quantum secret sharing (QSS). First, a restriction on QSS that comes from the no-cloning theorem is that any pair of authorized sets in an access structure should overlap. From the viewpoint of application, this places an unnatural constraint on secret sharing. We present a generalization, called assisted QSS (AQSS), where access structures without pairwise overlap of authorized sets is permissible, provided some shares are withheld by the share dealer. We show that no more than λ1\lambda-1 withheld shares are required, where λ\lambda is the minimum number of {\em partially linked classes} among the authorized sets for the QSS. Our result means that such applications of QSS need not be thwarted by the no-cloning theorem. Secondly, we point out a way of combining the features of QSS and quantum key distribution (QKD) for applications where a classical information is shared by quantum means. We observe that in such case, it is often possible to reduce the security proof of QSS to that of QKD.Comment: To appear in Physica Scripta, 7 pages, 1 figure, subsumes arXiv:quant-ph/040720
    corecore