917,147 research outputs found
Shared-memory Graph Truss Decomposition
We present PKT, a new shared-memory parallel algorithm and OpenMP
implementation for the truss decomposition of large sparse graphs. A k-truss is
a dense subgraph definition that can be considered a relaxation of a clique.
Truss decomposition refers to a partitioning of all the edges in the graph
based on their k-truss membership. The truss decomposition of a graph has many
applications. We show that our new approach PKT consistently outperforms other
truss decomposition approaches for a collection of large sparse graphs and on a
24-core shared-memory server. PKT is based on a recently proposed algorithm for
k-core decomposition.Comment: 10 pages, conference submissio
Open Transactions on Shared Memory
Transactional memory has arisen as a good way for solving many of the issues
of lock-based programming. However, most implementations admit isolated
transactions only, which are not adequate when we have to coordinate
communicating processes. To this end, in this paper we present OCTM, an
Haskell-like language with open transactions over shared transactional memory:
processes can join transactions at runtime just by accessing to shared
variables. Thus a transaction can co-operate with the environment through
shared variables, but if it is rolled-back, also all its effects on the
environment are retracted. For proving the expressive power of TCCS we give an
implementation of TCCS, a CCS-like calculus with open transactions
Shared Memory Parallel Subgraph Enumeration
The subgraph enumeration problem asks us to find all subgraphs of a target
graph that are isomorphic to a given pattern graph. Determining whether even
one such isomorphic subgraph exists is NP-complete---and therefore finding all
such subgraphs (if they exist) is a time-consuming task. Subgraph enumeration
has applications in many fields, including biochemistry and social networks,
and interestingly the fastest algorithms for solving the problem for
biochemical inputs are sequential. Since they depend on depth-first tree
traversal, an efficient parallelization is far from trivial. Nevertheless,
since important applications produce data sets with increasing difficulty,
parallelism seems beneficial.
We thus present here a shared-memory parallelization of the state-of-the-art
subgraph enumeration algorithms RI and RI-DS (a variant of RI for dense graphs)
by Bonnici et al. [BMC Bioinformatics, 2013]. Our strategy uses work stealing
and our implementation demonstrates a significant speedup on real-world
biochemical data---despite a highly irregular data access pattern. We also
improve RI-DS by pruning the search space better; this further improves the
empirical running times compared to the already highly tuned RI-DS.Comment: 18 pages, 12 figures, To appear at the 7th IEEE Workshop on Parallel
/ Distributed Computing and Optimization (PDCO 2017
Parallel and distributed Gr\"obner bases computation in JAS
This paper considers parallel Gr\"obner bases algorithms on distributed
memory parallel computers with multi-core compute nodes. We summarize three
different Gr\"obner bases implementations: shared memory parallel, pure
distributed memory parallel and distributed memory combined with shared memory
parallelism. The last algorithm, called distributed hybrid, uses only one
control communication channel between the master node and the worker nodes and
keeps polynomials in shared memory on a node. The polynomials are transported
asynchronous to the control-flow of the algorithm in a separate distributed
data structure. The implementation is generic and works for all implemented
(exact) fields. We present new performance measurements and discuss the
performance of the algorithms.Comment: 14 pages, 8 tables, 13 figure
- …