329 research outputs found

    Shape-Based Tumor Retrieval in Mammograms Using Relevance-Feedback Techniques

    Get PDF
    Abstract. This paper presents an experimental "morphological analysis" retrieval system for mammograms, using Relevance-Feedback techniques. The features adopted are first-order statistics of the Normalized Radial Distance, extracted from the annotated mass boundary. The system is evaluated on an extensive dataset of 2274 masses of the DDSM database, which involves 7 distinct classes. The experiments verify that the involvement of the radiologist as part of the retrieval process improves the results, even for such a hard classification task, reaching the precision rate of almost 90%. Therefore, Relevance-Feedback can be employed as a very useful complementary tool to a Computer Aided Diagnosis system

    NOVEL APPLICATIONS OF MACHINE LEARNING IN BIOINFORMATICS

    Get PDF
    Technological advances in next-generation sequencing and biomedical imaging have led to a rapid increase in biomedical data dimension and acquisition rate, which is challenging the conventional data analysis strategies. Modern machine learning techniques promise to leverage large data sets for finding hidden patterns within them, and for making accurate predictions. This dissertation aims to design novel machine learning-based models to transform biomedical big data into valuable biological insights. The research presented in this dissertation focuses on three bioinformatics domains: splice junction classification, gene regulatory network reconstruction, and lesion detection in mammograms. A critical step in defining gene structures and mRNA transcript variants is to accurately identify splice junctions. In the first work, we built the first deep learning-based splice junction classifier, DeepSplice. It outperforms the state-of-the-art classification tools in terms of both classification accuracy and computational efficiency. To uncover transcription factors governing metabolic reprogramming in non-small-cell lung cancer patients, we developed TFmeta, a machine learning approach to reconstruct relationships between transcription factors and their target genes in the second work. Our approach achieves the best performance on benchmark data sets. In the third work, we designed deep learning-based architectures to perform lesion detection in both 2D and 3D whole mammogram images

    Explainable deep learning models in medical image analysis

    Full text link
    Deep learning methods have been very effective for a variety of medical diagnostic tasks and has even beaten human experts on some of those. However, the black-box nature of the algorithms has restricted clinical use. Recent explainability studies aim to show the features that influence the decision of a model the most. The majority of literature reviews of this area have focused on taxonomy, ethics, and the need for explanations. A review of the current applications of explainable deep learning for different medical imaging tasks is presented here. The various approaches, challenges for clinical deployment, and the areas requiring further research are discussed here from a practical standpoint of a deep learning researcher designing a system for the clinical end-users.Comment: Preprint submitted to J.Imaging, MDP

    Visual character N-grams for classification and retrieval of radiological images

    Get PDF
    Diagnostic radiology struggles to maintain high interpretation accuracy. Retrieval of past similar cases would help the inexperienced radiologist in the interpretation process. Character n-gram model has been effective in text retrieval context in languages such as Chinese where there are no clear word boundaries. We propose the use of visual character n-gram model for representation of image for classification and retrieval purposes. Regions of interests in mammographic images are represented with the character n-gram features. These features are then used as input to back-propagation neural network for classification of regions into normal and abnormal categories. Experiments on miniMIAS database show that character n-gram features are useful in classifying the regions into normal and abnormal categories. Promising classification accuracies are observed (83.33%) for fatty background tissue warranting further investigation. We argue that Classifying regions of interests would reduce the number of comparisons necessary for finding similar images from the database and hence would reduce the time required for retrieval of past similar cases
    • …
    corecore