5,600 research outputs found

    A Review of Audio Features and Statistical Models Exploited for Voice Pattern Design

    Full text link
    Audio fingerprinting, also named as audio hashing, has been well-known as a powerful technique to perform audio identification and synchronization. It basically involves two major steps: fingerprint (voice pattern) design and matching search. While the first step concerns the derivation of a robust and compact audio signature, the second step usually requires knowledge about database and quick-search algorithms. Though this technique offers a wide range of real-world applications, to the best of the authors' knowledge, a comprehensive survey of existing algorithms appeared more than eight years ago. Thus, in this paper, we present a more up-to-date review and, for emphasizing on the audio signal processing aspect, we focus our state-of-the-art survey on the fingerprint design step for which various audio features and their tractable statistical models are discussed.Comment: http://www.iaria.org/conferences2015/PATTERNS15.html ; Seventh International Conferences on Pervasive Patterns and Applications (PATTERNS 2015), Mar 2015, Nice, Franc

    Scalable Image Retrieval by Sparse Product Quantization

    Get PDF
    Fast Approximate Nearest Neighbor (ANN) search technique for high-dimensional feature indexing and retrieval is the crux of large-scale image retrieval. A recent promising technique is Product Quantization, which attempts to index high-dimensional image features by decomposing the feature space into a Cartesian product of low dimensional subspaces and quantizing each of them separately. Despite the promising results reported, their quantization approach follows the typical hard assignment of traditional quantization methods, which may result in large quantization errors and thus inferior search performance. Unlike the existing approaches, in this paper, we propose a novel approach called Sparse Product Quantization (SPQ) to encoding the high-dimensional feature vectors into sparse representation. We optimize the sparse representations of the feature vectors by minimizing their quantization errors, making the resulting representation is essentially close to the original data in practice. Experiments show that the proposed SPQ technique is not only able to compress data, but also an effective encoding technique. We obtain state-of-the-art results for ANN search on four public image datasets and the promising results of content-based image retrieval further validate the efficacy of our proposed method.Comment: 12 page

    Dictionary Learning-based Inpainting on Triangular Meshes

    Full text link
    The problem of inpainting consists of filling missing or damaged regions in images and videos in such a way that the filling pattern does not produce artifacts that deviate from the original data. In addition to restoring the missing data, the inpainting technique can also be used to remove undesired objects. In this work, we address the problem of inpainting on surfaces through a new method based on dictionary learning and sparse coding. Our method learns the dictionary through the subdivision of the mesh into patches and rebuilds the mesh via a method of reconstruction inspired by the Non-local Means method on the computed sparse codes. One of the advantages of our method is that it is capable of filling the missing regions and simultaneously removes noise and enhances important features of the mesh. Moreover, the inpainting result is globally coherent as the representation based on the dictionaries captures all the geometric information in the transformed domain. We present two variations of the method: a direct one, in which the model is reconstructed and restored directly from the representation in the transformed domain and a second one, adaptive, in which the missing regions are recreated iteratively through the successive propagation of the sparse code computed in the hole boundaries, which guides the local reconstructions. The second method produces better results for large regions because the sparse codes of the patches are adapted according to the sparse codes of the boundary patches. Finally, we present and analyze experimental results that demonstrate the performance of our method compared to the literature

    Sparse and Nonnegative Factorizations For Music Understanding

    Get PDF
    In this dissertation, we propose methods for sparse and nonnegative factorization that are specifically suited for analyzing musical signals. First, we discuss two constraints that aid factorization of musical signals: harmonic and co-occurrence constraints. We propose a novel dictionary learning method that imposes harmonic constraints upon the atoms of the learned dictionary while allowing the dictionary size to grow appropriately during the learning procedure. When there is significant spectral-temporal overlap among the musical sources, our method outperforms popular existing matrix factorization methods as measured by the recall and precision of learned dictionary atoms. We also propose co-occurrence constraints -- three simple and convenient multiplicative update rules for nonnegative matrix factorization (NMF) that enforce dependence among atoms. Using examples in music transcription, we demonstrate the ability of these updates to represent each musical note with multiple atoms and cluster the atoms for source separation purposes. Second, we study how spectral and temporal information extracted by nonnegative factorizations can improve upon musical instrument recognition. Musical instrument recognition in melodic signals is difficult, especially for classification systems that rely entirely upon spectral information instead of temporal information. Here, we propose a simple and effective method of combining spectral and temporal information for instrument recognition. While existing classification methods use traditional features such as statistical moments, we extract novel features from spectral and temporal atoms generated by NMF using a biologically motivated multiresolution gamma filterbank. Unlike other methods that require thresholds, safeguards, and hierarchies, the proposed spectral-temporal method requires only simple filtering and a flat classifier. Finally, we study how to perform sparse factorization when a large dictionary of musical atoms is already known. Sparse coding methods such as matching pursuit (MP) have been applied to problems in music information retrieval such as transcription and source separation with moderate success. However, when the set of dictionary atoms is large, identification of the best match in the dictionary with the residual is slow -- linear in the size of the dictionary. Here, we propose a variant called approximate matching pursuit (AMP) that is faster than MP while maintaining scalability and accuracy. Unlike MP, AMP uses an approximate nearest-neighbor (ANN) algorithm to find the closest match in a dictionary in sublinear time. One such ANN algorithm, locality-sensitive hashing (LSH), is a probabilistic hash algorithm that places similar, yet not identical, observations into the same bin. While the accuracy of AMP is comparable to similar MP methods, the computational complexity is reduced. Also, by using LSH, this method scales easily; the dictionary can be expanded without reorganizing any data structures

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    NON-LINEAR AND SPARSE REPRESENTATIONS FOR MULTI-MODAL RECOGNITION

    Get PDF
    In the first part of this dissertation, we address the problem of representing 2D and 3D shapes. In particular, we introduce a novel implicit shape representation based on Support Vector Machine (SVM) theory. Each shape is represented by an analytic decision function obtained by training an SVM, with a Radial Basis Function (RBF) kernel, so that the interior shape points are given higher values. This empowers support vector shape (SVS) with multifold advantages. First, the representation uses a sparse subset of feature points determined by the support vectors, which significantly improves the discriminative power against noise, fragmentation and other artifacts that often come with the data. Second, the use of the RBF kernel provides scale, rotation, and translation invariant features, and allows a shape to be represented accurately regardless of its complexity. Finally, the decision function can be used to select reliable feature points. These features are described using gradients computed from highly consistent decision functions instead of conventional edges. Our experiments on 2D and 3D shapes demonstrate promising results. The availability of inexpensive 3D sensors like Kinect necessitates the design of new representation for this type of data. We present a 3D feature descriptor that represents local topologies within a set of folded concentric rings by distances from local points to a projection plane. This feature, called as Concentric Ring Signature (CORS), possesses similar computational advantages to point signatures yet provides more accurate matches. CORS produces compact and discriminative descriptors, which makes it more robust to noise and occlusions. It is also well-known to computer vision researchers that there is no universal representation that is optimal for all types of data or tasks. Sparsity has proved to be a good criterion for working with natural images. This motivates us to develop efficient sparse and non-linear learning techniques for automatically extracting useful information from visual data. Specifically, we present dictionary learning methods for sparse and redundant representations in a high-dimensional feature space. Using the kernel method, we describe how the well-known dictionary learning approaches such as the method of optimal directions and KSVD can be made non-linear. We analyse their kernel constructions and demonstrate their effectiveness through several experiments on classification problems. It is shown that non-linear dictionary learning approaches can provide significantly better discrimination compared to their linear counterparts and kernel PCA, especially when the data is corrupted by different types of degradations. Visual descriptors are often high dimensional. This results in high computational complexity for sparse learning algorithms. Motivated by this observation, we introduce a novel framework, called sparse embedding (SE), for simultaneous dimensionality reduction and dictionary learning. We formulate an optimization problem for learning a transformation from the original signal domain to a lower-dimensional one in a way that preserves the sparse structure of data. We propose an efficient optimization algorithm and present its non-linear extension based on the kernel methods. One of the key features of our method is that it is computationally efficient as the learning is done in the lower-dimensional space and it discards the irrelevant part of the signal that derails the dictionary learning process. Various experiments show that our method is able to capture the meaningful structure of data and can perform significantly better than many competitive algorithms on signal recovery and object classification tasks. In many practical applications, we are often confronted with the situation where the data that we use to train our models are different from that presented during the testing. In the final part of this dissertation, we present a novel framework for domain adaptation using a sparse and hierarchical network (DASH-N), which makes use of the old data to improve the performance of a system operating on a new domain. Our network jointly learns a hierarchy of features together with transformations that rectify the mismatch between different domains. The building block of DASH-N is the latent sparse representation. It employs a dimensionality reduction step that can prevent the data dimension from increasing too fast as traversing deeper into the hierarchy. Experimental results show that our method consistently outperforms the current state-of-the-art by a significant margin. Moreover, we found that a multi-layer {DASH-N} has an edge over the single-layer DASH-N
    • …
    corecore