15,010 research outputs found

    Full abstraction for fair testing in CCS (expanded version)

    Get PDF
    In previous work with Pous, we defined a semantics for CCS which may both be viewed as an innocent form of presheaf semantics and as a concurrent form of game semantics. We define in this setting an analogue of fair testing equivalence, which we prove fully abstract w.r.t. standard fair testing equivalence. The proof relies on a new algebraic notion called playground, which represents the `rule of the game'. From any playground, we derive two languages equipped with labelled transition systems, as well as a strong, functional bisimulation between them.Comment: 80 page

    The Kantian Framework of Complementarity

    Get PDF
    A growing number of commentators have, in recent years, noted the important affinities in the views of Immanuel Kant and Niels Bohr. While these commentators are correct, the picture they present of the connections between Bohr and Kant is painted in broad strokes; it is open to the criticism that these affinities are merely superficial. In this essay, I provide a closer, structural, analysis of both Bohr's and Kant's views that makes these connections more explicit. In particular, I demonstrate the similarities between Bohr's argument, on the one hand, that neither the wave nor the particle description of atomic phenomena pick out an object in the ordinary sense of the word, and Kant's requirement, on the other hand, that both 'mathematical' (having to do with magnitude) and 'dynamical' (having to do with an object's interaction with other objects) principles must be applicable to appearances in order for us to determine them as objects of experience. I argue that Bohr's 'Complementarity interpretation' of quantum mechanics, which views atomic objects as idealizations, and which licenses the repeal of the principle of causality for the domain of atomic physics, is perfectly compatible with, and indeed follows naturally from a broadly Kantian epistemological framework.Comment: Slight change between this version and previous in the wording of the first paragraph of the section 'Complementarity

    Environment and classical channels in categorical quantum mechanics

    Full text link
    We present a both simple and comprehensive graphical calculus for quantum computing. In particular, we axiomatize the notion of an environment, which together with the earlier introduced axiomatic notion of classical structure enables us to define classical channels, quantum measurements and classical control. If we moreover adjoin the earlier introduced axiomatic notion of complementarity, we obtain sufficient structural power for constructive representation and correctness derivation of typical quantum informatic protocols.Comment: 26 pages, many pics; this third version has substantially more explanations than previous ones; Journal reference is of short 14 page version; Proceedings of the 19th EACSL Annual Conference on Computer Science Logic (CSL), Lecture Notes in Computer Science 6247, Springer-Verlag (2010

    E-democracy as the frame of networked public discourse : information, consensus and complexity

    Get PDF
    The quest for democracy and the political reflection about its future are to be understood nowadays in the horizon of the networked information revolution. Hence, it seems difficult to speak of democracy without speaking of e-democracy, the key issue of which is the re-configuration of models of information production and concentration of attention, which are to be investigated both from a political and an epistemological standpoint. In this perspective, our paper aims at analyzing the multi-agent dimension of networked public discourse, by envisaging two competing models of structuring this discourse (those of dialogue and of claim) and by suggesting to endorse the epistemic idea of complementarity as a guidance principle for elaborating a form of partnership between traditional and electronic media

    Interpretation of neutrino flux limits from neutrino telescopes on the Hillas plot

    Full text link
    We discuss the interplay between spectral shape and detector response beyond a simple E^-2 neutrino flux at neutrino telescopes, at the example of time-integrated point source searches using IceCube-40 data. We use a self-consistent model for the neutrino production, in which protons interact with synchrotron photons from co-accelerated electrons, and we fully take into account the relevant pion and kaon production modes, the flavor composition at the source, flavor mixing, and magnetic field effects on the secondaries (pions, muon, and kaons). Since some of the model parameters can be related to the Hillas parameters R (size of the acceleration region) and B (magnetic field), we relate the detector response to the Hillas plane. In order to compare the response to different spectral shapes, we use the energy flux density as a measure for the pion production efficiency times luminosity of the source. We demonstrate that IceCube has a very good reach in this quantity for AGN nuclei and jets for all source declinations, while the spectra of sources with strong magnetic fields are found outside the optimal reach. We also demonstrate where neutrinos from kaon decays and muon tracks from tau decays can be relevant for the detector response. Finally, we point out the complementarity between IceCube and other experiments sensitive to high-energy neutrinos, at the example of 2004-2008 Earth-skimming neutrino data from Auger. We illustrate that Auger, in principle, is better sensitive to the parameter region in the Hillas plane from which the highest-energetic cosmic rays may be expected in this model.Comment: 28 pages, 10 figures. Substantial clarifications, such as on definition of "sensitivity" and model descriptio
    corecore