2,179 research outputs found

    Improving Bag-of-Words model with spatial information

    Get PDF
    Bag-of-Words (BOW) models have recently become popular for the task of object recognition, owing to their good performance and simplicity. Much work has been proposed over the years to improve the BOW model, where the Spatial Pyramid Matching technique is the most notable. In this work, we propose three novel techniques to capture more re_ned spatial information between image features than that provided by the Spatial Pyramids. Our techniques demonstrate a performance gain over the Spatial Pyramid representation of the BOW model

    Towards a Law of Invariance in Human Concept Learning

    Get PDF
    Invariance principles underlie many key theories in modern science. They provide the explanatory and predictive framework necessary for the rigorous study of natural phenomena ranging from the structure of crystals, to magnetism, to relativistic mechanics. Vigo (2008, 2009)introduced a new general notion and principle of invariance from which two parameter-free (ratio and exponential) models were derived to account for human conceptual behavior. Here we introduce a new parameterized \ud exponential ā€œlawā€ based on the same invariance principle. The law accurately predicts the subjective degree of difficulty that humans experience when learning different types of concepts. In addition, it precisely fits the data from a large-scale experiment which examined a total of 84 category structures across 10 category families (R-Squared =.97, p < .0001; r= .98, p < .0001). Moreover, it overcomes seven key challenges that had, hitherto, been grave obstacles for theories of concept learning

    Recognition of 3-D Objects from Multiple 2-D Views by a Self-Organizing Neural Architecture

    Full text link
    The recognition of 3-D objects from sequences of their 2-D views is modeled by a neural architecture, called VIEWNET that uses View Information Encoded With NETworks. VIEWNET illustrates how several types of noise and varialbility in image data can be progressively removed while incornplcte image features are restored and invariant features are discovered using an appropriately designed cascade of processing stages. VIEWNET first processes 2-D views of 3-D objects using the CORT-X 2 filter, which discounts the illuminant, regularizes and completes figural boundaries, and removes noise from the images. Boundary regularization and cornpletion are achieved by the same mechanisms that suppress image noise. A log-polar transform is taken with respect to the centroid of the resulting figure and then re-centered to achieve 2-D scale and rotation invariance. The invariant images are coarse coded to further reduce noise, reduce foreshortening effects, and increase generalization. These compressed codes are input into a supervised learning system based on the fuzzy ARTMAP algorithm. Recognition categories of 2-D views are learned before evidence from sequences of 2-D view categories is accumulated to improve object recognition. Recognition is studied with noisy and clean images using slow and fast learning. VIEWNET is demonstrated on an MIT Lincoln Laboratory database of 2-D views of jet aircraft with and without additive noise. A recognition rate of 90% is achieved with one 2-D view category and of 98.5% correct with three 2-D view categories.National Science Foundation (IRI 90-24877); Office of Naval Research (N00014-91-J-1309, N00014-91-J-4100, N00014-92-J-0499); Air Force Office of Scientific Research (F9620-92-J-0499, 90-0083

    Data complexity in machine learning

    Get PDF
    We investigate the role of data complexity in the context of binary classification problems. The universal data complexity is defined for a data set as the Kolmogorov complexity of the mapping enforced by the data set. It is closely related to several existing principles used in machine learning such as Occam's razor, the minimum description length, and the Bayesian approach. The data complexity can also be defined based on a learning model, which is more realistic for applications. We demonstrate the application of the data complexity in two learning problems, data decomposition and data pruning. In data decomposition, we illustrate that a data set is best approximated by its principal subsets which are Pareto optimal with respect to the complexity and the set size. In data pruning, we show that outliers usually have high complexity contributions, and propose methods for estimating the complexity contribution. Since in practice we have to approximate the ideal data complexity measures, we also discuss the impact of such approximations
    • ā€¦
    corecore