192 research outputs found

    Nearly optimal robust secret sharing

    Get PDF
    Abstract: We prove that a known approach to improve Shamir's celebrated secret sharing scheme; i.e., adding an information-theoretic authentication tag to the secret, can make it robust for n parties against any collusion of size δn, for any constant δ ∈ (0; 1/2). This result holds in the so-called “nonrushing” model in which the n shares are submitted simultaneously for reconstruction. We thus finally obtain a simple, fully explicit, and robust secret sharing scheme in this model that is essentially optimal in all parameters including the share size which is k(1+o(1))+O(κ), where k is the secret length and κ is the security parameter. Like Shamir's scheme, in this modified scheme any set of more than δn honest parties can efficiently recover the secret. Using algebraic geometry codes instead of Reed-Solomon codes, the share length can be decreased to a constant (only depending on δ) while the number of shares n can grow independently. In this case, when n is large enough, the scheme satisfies the “threshold” requirement in an approximate sense; i.e., any set of δn(1 + ρ) honest parties, for arbitrarily small ρ > 0, can efficiently reconstruct the secret

    A Secret Sharing Scheme Based on Group Presentations and the Word Problem

    Get PDF
    A (t,n)-threshold secret sharing scheme is a method to distribute a secret among n participants in such a way that any t participants can recover the secret, but no t-1 participants can. In this paper, we propose two secret sharing schemes using non-abelian groups. One scheme is the special case where all the participants must get together to recover the secret. The other one is a (t,n)-threshold scheme that is a combination of Shamir's scheme and the group-theoretic scheme proposed in this paper.Comment: 8 page

    Proofs of partial knowledge and simplified design of witness hiding protocols

    Get PDF
    Suppose we are given a proof of knowledge P in which a prover demonstrates that he knows a solution to a given problem instance. Suppose also that we have a secret sharing scheme S on n participants. Then under certain assumptions on P and S , we show how to transform P into a witness indistinguishable protocol, in which the prover demonstrates knowledge of the solution to some subset of n problem instances out of a collection of subsets defined by S . For example, using a threshold scheme, the prover can show that he knows at least d out of n solutions without revealing which d instances are involved. If the instances are independently generated, we get a witness hiding protocol, even if P did not have this property. Our results can be used to efficiently implement general forms of group oriented identification and signatures. Our transformation produces a protocol with the same number of rounds as P and communication complexity n times that of P . Our results use no unproven complexity assumptions
    corecore