140,902 research outputs found

    Macroelement modeling of shallow foundations

    Full text link
    The paper presents a new macroelement model for shallow foundations. The model is defined through a non-linear constitutive law written in terms of some generalized force and displacement parameters. The linear part of this constitutive law comes from the dynamic impedances of the foundation. The non-linear part comprises two mechanisms. One is due to the irreversible elastoplastic soil behavior: it is described with a bounding surface hypoplastic model, adapted for the description of the cyclic soil response. An original feature of the formulation is that the bounding surface is considered independently of the surface of ultimate loads of the system. The second mechanism is the detachment that can take place at the soil-footing interface (foundation uplift). It is totally reversible and non-dissipative and can thus be described by a phenomenological non-linear elastic model. The macroelement is qualitatively validated by application to soil-structure interaction analyses of simple real structures

    Investigation of the Size Effect at Different Geometries on Stress Distribution of Sandy Soils

    Get PDF
    In this study, the induced vertical soil stress values occuring along with horizontal surfaces at predetermined depths of the shallow foundations on sandy soils were investigated by model tests. In the model tests pressure transducer was used to measure the stresses.Circular foundations at different size were used in the model tests and the size effect were investigated. As a result of this study, the size effect at circular foundations wasn't found tobe an important factor on stress distribution of sandy soils

    The vertical capacity of grillage foundations

    Get PDF
    Grillage foundations may provide an economical alternative to offshore ‘mudmat' foundations for seabed infrastructure, owing to their improved hydrodynamic characteristics, which are important during installation. Grillage foundations consist of a mesh of vertical grilles that penetrate the seabed during loading. Offshore loadings on these types of foundation are likely to consist of vertical (mostly dead weight) loading and horizontal ‘in-service' loads. However, to date there is no accepted method of design, as foundation capacity may differ significantly from that of conventional solid shallow foundations. This paper presents an analytical method designed to calculate the variation of vertical bearing capacity with grille penetration in sand. The results show that grillages are able to achieve the same capacity as solid foundations of the same breadth, but this requires significant penetration of the grillage. Consequently, design choices are likely to depend on the amount of settlement the structure can tolerate. Simplified analytical equations have been presented to allow calculation of the load–settlement response, and to calculate how much settlement is required to mobilise the flat-plate capacity of a solid mudmat of the same overall breadth. The methodology has been validated by comparing results with those from model tests. </jats:p

    AceWiki: A Natural and Expressive Semantic Wiki

    Full text link
    We present AceWiki, a prototype of a new kind of semantic wiki using the controlled natural language Attempto Controlled English (ACE) for representing its content. ACE is a subset of English with a restricted grammar and a formal semantics. The use of ACE has two important advantages over existing semantic wikis. First, we can improve the usability and achieve a shallow learning curve. Second, ACE is more expressive than the formal languages of existing semantic wikis. Our evaluation shows that people who are not familiar with the formal foundations of the Semantic Web are able to deal with AceWiki after a very short learning phase and without the help of an expert.Comment: To be published as: Proceedings of Semantic Web User Interaction at CHI 2008: Exploring HCI Challenges, CEUR Workshop Proceeding
    corecore