2 research outputs found

    Sparsely-connected autoencoder (SCA) for single cell RNAseq data mining

    Get PDF
    Abstract Single-cell RNA sequencing (scRNAseq) is an essential tool to investigate cellular heterogeneity. Thus, it would be of great interest being able to disclose biological information belonging to cell subpopulations, which can be defined by clustering analysis of scRNAseq data. In this manuscript, we report a tool that we developed for the functional mining of single cell clusters based on Sparsely-Connected Autoencoder (SCA). This tool allows uncovering hidden features associated with scRNAseq data. We implemented two new metrics, QCC (Quality Control of Cluster) and QCM (Quality Control of Model), which allow quantifying the ability of SCA to reconstruct valuable cell clusters and to evaluate the quality of the neural network achievements, respectively. Our data indicate that SCA encoded space, derived by different experimentally validated data (TF targets, miRNA targets, Kinase targets, and cancer-related immune signatures), can be used to grasp single cell cluster-specific functional features. In our implementation, SCA efficacy comes from its ability to reconstruct only specific clusters, thus indicating only those clusters where the SCA encoding space is a key element for cells aggregation. SCA analysis is implemented as module in rCASC framework and it is supported by a GUI to simplify it usage for biologists and medical personnel

    Shallow Sparsely-Connected Autoencoders for Gene Set Projection

    No full text
    When analyzing biological data, it can be helpful to consider gene sets, or predefined groups of biologically related genes. Methods exist for identifying gene sets that are differential between conditions, but large public datasets from consortium projects and single-cell RNA-Sequencing have opened the door for gene set analysis using more sophisticated machine learning techniques, such as autoencoders and variational autoencoders. We present shallow sparsely-connected autoencoders (SSCAs) and variational autoencoders (SSCVAs) as tools for projecting gene-level data onto gene sets. We tested these approaches on single-cell RNA-Sequencing data from blood cells and on RNA-Sequencing data from breast cancer patients. Both SSCA and SSCVA can recover known biological features from these datasets and the SSCVA method often outperforms SSCA (and six existing gene set scoring algorithms) on classification and prediction tasks.National Institutes of Health (U.S.) (Grant R01NS089076)National Institutes of Health (U.S.) (Grant 1U01CA18498
    corecore