143,145 research outputs found

    Fast Shadow Detection from a Single Image Using a Patched Convolutional Neural Network

    Full text link
    In recent years, various shadow detection methods from a single image have been proposed and used in vision systems; however, most of them are not appropriate for the robotic applications due to the expensive time complexity. This paper introduces a fast shadow detection method using a deep learning framework, with a time cost that is appropriate for robotic applications. In our solution, we first obtain a shadow prior map with the help of multi-class support vector machine using statistical features. Then, we use a semantic- aware patch-level Convolutional Neural Network that efficiently trains on shadow examples by combining the original image and the shadow prior map. Experiments on benchmark datasets demonstrate the proposed method significantly decreases the time complexity of shadow detection, by one or two orders of magnitude compared with state-of-the-art methods, without losing accuracy.Comment: 6 pages, 5 figures, Submitted to IROS 201

    Insignificant shadow detection for video segmentation

    Get PDF
    To prevent moving cast shadows from being misunderstood as part of moving objects in change detection based video segmentation, this paper proposes a novel approach to the cast shadow detection based on the edge and region information in multiple frames. First, an initial change detection mask containing moving objects and cast shadows is obtained. Then a Canny edge map is generated. After that, the shadow region is detected and removed through multiframe integration, edge matching, and region growing. Finally, a post processing procedure is used to eliminate noise and tune the boundaries of the objects. Our approach can be used for video segmentation in indoor environment. The experimental results demonstrate its good performance

    Drone Shadow Tracking

    Get PDF
    Aerial videos taken by a drone not too far above the surface may contain the drone's shadow projected on the scene. This deteriorates the aesthetic quality of videos. With the presence of other shadows, shadow removal cannot be directly applied, and the shadow of the drone must be tracked. Tracking a drone's shadow in a video is, however, challenging. The varying size, shape, change of orientation and drone altitude pose difficulties. The shadow can also easily disappear over dark areas. However, a shadow has specific properties that can be leveraged, besides its geometric shape. In this paper, we incorporate knowledge of the shadow's physical properties, in the form of shadow detection masks, into a correlation-based tracking algorithm. We capture a test set of aerial videos taken with different settings and compare our results to those of a state-of-the-art tracking algorithm.Comment: 5 pages, 4 figure

    Decentralization and the Shadow Economy: Oates Meets Allingham-Sandmo

    Get PDF
    This paper studies the impact of decentralization on the shadow economy. We argue that decentralization may decrease the size of the shadow economy mainly through two transmission channels: (1) Decentralization enhancing public sector efficiency (efficiency effect), and (2) decentralization reducing the distance between bureaucrats and economic agents, which increases the probability of detection of shadow economic activities (deterrence effect). Using various measures of fiscal, political and government employment decentralization in a cross-section of countries, we find the deterrence effect to be of more importance. The deterrence effect is stronger, the lower the degree of institutional quality. Remarkably, we find no robust evidence of the efficiency effect.decentralization, shadow economy

    Shadow detection using color and edge information.

    Get PDF
    Shadows appear in many scenes. Human can easily distinguish shadows from objects, but it is one of the challenges for shadow detection intelligent automated systems. Accurate shadow detection can be difficult due to the illumination variations of the background and similarity between appearance of the objects and the background. Color and edge information are two popular features that have been used to distinguish cast shadows from objects. However, this become a problem when the difference of color information between object, shadow and background is poor, the edge of the shadow area is not clear and the shadow detection method is supposed to use only color or edge information method. In this article a shadow detection method using both color and edge information is presented. In order to improve the accuracy of shadow detection using color information, a new formula is used in the denominator of original c1 c2 c3. In addition using the hue difference of foreground and background is proposed. Furthermore, edge information is applied separately and the results are combined using a Boolean operator
    corecore