1 research outputs found

    Shadow Dirichlet for Restricted Probability Modeling

    No full text
    Although the Dirichlet distribution is widely used, the independence structure of its components limits its accuracy as a model. The proposed shadow Dirichlet distribution manipulates the support in order to model probability mass functions (pmfs) with dependencies or constraints that often arise in real world problems, such as regularized pmfs, monotonic pmfs, and pmfs with bounded variation. We describe some properties of this new class of distributions, provide maximum entropy constructions, give an expectation-maximization method for estimating the mean parameter, and illustrate with real data. 1 Modeling Probabilities for Machine Learning Modeling probability mass functions (pmfs) as random is useful in solving many real-world problems. A common random model for pmfs is the Dirichlet distribution [1]. The Dirichlet is conjugate to the multinomial and hence mathematically convenient for Bayesian inference, and the number of parameters is conveniently linear in the size of the sample space. However, the Dirichlet is a distribution over the entire probability simplex, and for many problems this is simply the wrong domai
    corecore