2,363 research outputs found

    Design and Analysis of Nonbinary LDPC Codes for Arbitrary Discrete-Memoryless Channels

    Full text link
    We present an analysis, under iterative decoding, of coset LDPC codes over GF(q), designed for use over arbitrary discrete-memoryless channels (particularly nonbinary and asymmetric channels). We use a random-coset analysis to produce an effect that is similar to output-symmetry with binary channels. We show that the random selection of the nonzero elements of the GF(q) parity-check matrix induces a permutation-invariance property on the densities of the decoder messages, which simplifies their analysis and approximation. We generalize several properties, including symmetry and stability from the analysis of binary LDPC codes. We show that under a Gaussian approximation, the entire q-1 dimensional distribution of the vector messages is described by a single scalar parameter (like the distributions of binary LDPC messages). We apply this property to develop EXIT charts for our codes. We use appropriately designed signal constellations to obtain substantial shaping gains. Simulation results indicate that our codes outperform multilevel codes at short block lengths. We also present simulation results for the AWGN channel, including results within 0.56 dB of the unconstrained Shannon limit (i.e. not restricted to any signal constellation) at a spectral efficiency of 6 bits/s/Hz.Comment: To appear, IEEE Transactions on Information Theory, (submitted October 2004, revised and accepted for publication, November 2005). The material in this paper was presented in part at the 41st Allerton Conference on Communications, Control and Computing, October 2003 and at the 2005 IEEE International Symposium on Information Theor

    New Combinatorial Construction Techniques for Low-Density Parity-Check Codes and Systematic Repeat-Accumulate Codes

    Full text link
    This paper presents several new construction techniques for low-density parity-check (LDPC) and systematic repeat-accumulate (RA) codes. Based on specific classes of combinatorial designs, the improved code design focuses on high-rate structured codes with constant column weights 3 and higher. The proposed codes are efficiently encodable and exhibit good structural properties. Experimental results on decoding performance with the sum-product algorithm show that the novel codes offer substantial practical application potential, for instance, in high-speed applications in magnetic recording and optical communications channels.Comment: 10 pages; to appear in "IEEE Transactions on Communications

    Design and Analysis of Time-Invariant SC-LDPC Convolutional Codes With Small Constraint Length

    Full text link
    In this paper, we deal with time-invariant spatially coupled low-density parity-check convolutional codes (SC-LDPC-CCs). Classic design approaches usually start from quasi-cyclic low-density parity-check (QC-LDPC) block codes and exploit suitable unwrapping procedures to obtain SC-LDPC-CCs. We show that the direct design of the SC-LDPC-CCs syndrome former matrix or, equivalently, the symbolic parity-check matrix, leads to codes with smaller syndrome former constraint lengths with respect to the best solutions available in the literature. We provide theoretical lower bounds on the syndrome former constraint length for the most relevant families of SC-LDPC-CCs, under constraints on the minimum length of cycles in their Tanner graphs. We also propose new code design techniques that approach or achieve such theoretical limits.Comment: 30 pages, 5 figures, accepted for publication in IEEE Transactions on Communication

    Deriving Good LDPC Convolutional Codes from LDPC Block Codes

    Full text link
    Low-density parity-check (LDPC) convolutional codes are capable of achieving excellent performance with low encoding and decoding complexity. In this paper we discuss several graph-cover-based methods for deriving families of time-invariant and time-varying LDPC convolutional codes from LDPC block codes and show how earlier proposed LDPC convolutional code constructions can be presented within this framework. Some of the constructed convolutional codes significantly outperform the underlying LDPC block codes. We investigate some possible reasons for this "convolutional gain," and we also discuss the --- mostly moderate --- decoder cost increase that is incurred by going from LDPC block to LDPC convolutional codes.Comment: Submitted to IEEE Transactions on Information Theory, April 2010; revised August 2010, revised November 2010 (essentially final version). (Besides many small changes, the first and second revised versions contain corrected entries in Tables I and II.

    Design of Non-Binary Quasi-Cyclic LDPC Codes by ACE Optimization

    Full text link
    An algorithm for constructing Tanner graphs of non-binary irregular quasi-cyclic LDPC codes is introduced. It employs a new method for selection of edge labels allowing control over the code's non-binary ACE spectrum and resulting in low error-floor. The efficiency of the algorithm is demonstrated by generating good codes of short to moderate length over small fields, outperforming codes generated by the known methods.Comment: Accepted to 2013 IEEE Information Theory Worksho
    corecore