769 research outputs found

    The invariants of the Clifford groups

    Get PDF
    The automorphism group of the Barnes-Wall lattice L_m in dimension 2^m (m not 3) is a subgroup of index 2 in a certain ``Clifford group'' C_m (an extraspecial group of order 2^(1+2m) extended by an orthogonal group). This group and its complex analogue CC_m have arisen in recent years in connection with the construction of orthogonal spreads, Kerdock sets, packings in Grassmannian spaces, quantum codes, Siegel modular forms and spherical designs. In this paper we give a simpler proof of Runge's 1996 result that the space of invariants for C_m of degree 2k is spanned by the complete weight enumerators of the codes obtained by tensoring binary self-dual codes of length 2k with the field GF(2^m); these are a basis if m >= k-1. We also give new constructions for L_m and C_m: let M be the Z[sqrt(2)]-lattice with Gram matrix [2, sqrt(2); sqrt(2), 2]. Then L_m is the rational part of the mth tensor power of M, and C_m is the automorphism group of this tensor power. Also, if C is a binary self-dual code not generated by vectors of weight 2, then C_m is precisely the automorphism group of the complete weight enumerator of the tensor product of C and GF(2^m). There are analogues of all these results for the complex group CC_m, with ``doubly-even self-dual code'' instead of ``self-dual code''.Comment: Latex, 24 pages. Many small improvement

    Hardness of decoding quantum stabilizer codes

    Full text link
    In this article we address the computational hardness of optimally decoding a quantum stabilizer code. Much like classical linear codes, errors are detected by measuring certain check operators which yield an error syndrome, and the decoding problem consists of determining the most likely recovery given the syndrome. The corresponding classical problem is known to be NP-complete, and a similar decoding problem for quantum codes is also known to be NP-complete. However, this decoding strategy is not optimal in the quantum setting as it does not take into account error degeneracy, which causes distinct errors to have the same effect on the code. Here, we show that optimal decoding of stabilizer codes is computationally much harder than optimal decoding of classical linear codes, it is #P

    Self-Dual Codes

    Get PDF
    Self-dual codes are important because many of the best codes known are of this type and they have a rich mathematical theory. Topics covered in this survey include codes over F_2, F_3, F_4, F_q, Z_4, Z_m, shadow codes, weight enumerators, Gleason-Pierce theorem, invariant theory, Gleason theorems, bounds, mass formulae, enumeration, extremal codes, open problems. There is a comprehensive bibliography.Comment: 136 page
    • …
    corecore