1,245 research outputs found

    New Lower Bounds for van der Waerden Numbers Using Distributed Computing

    Full text link
    This paper provides new lower bounds for van der Waerden numbers. The number W(k,r)W(k,r) is defined to be the smallest integer nn for which any rr-coloring of the integers 0,n10 \ldots, n-1 admits monochromatic arithmetic progression of length kk; its existence is implied by van der Waerden's Theorem. We exhibit rr-colorings of 0n10\ldots n-1 that do not contain monochromatic arithmetic progressions of length kk to prove that W(k,r)>nW(k, r)>n. These colorings are constructed using existing techniques. Rabung's method, given a prime pp and a primitive root ρ\rho, applies a color given by the discrete logarithm base ρ\rho mod rr and concatenates k1k-1 copies. We also used Herwig et al's Cyclic Zipper Method, which doubles or quadruples the length of a coloring, with the faster check of Rabung and Lotts. We were able to check larger primes than previous results, employing around 2 teraflops of computing power for 12 months through distributed computing by over 500 volunteers. This allowed us to check all primes through 950 million, compared to 10 million by Rabung and Lotts. Our lower bounds appear to grow roughly exponentially in kk. Given that these constructions produce tight lower bounds for known van der Waerden numbers, this data suggests that exact van der Waerden Numbers grow exponentially in kk with ratio rr asymptotically, which is a new conjecture, according to Graham.Comment: 8 pages, 1 figure. This version reflects new results and reader comment

    Polignac Numbers, Conjectures of Erd\"os on Gaps between Primes, Arithmetic Progressions in Primes, and the Bounded Gap Conjecture

    Full text link
    In the present work we prove a number of surprising results about gaps between consecutive primes and arithmetic progressions in the sequence of generalized twin primes which could not have been proven without the recent fantastic achievement of Yitang Zhang about the existence of bounded gaps between consecutive primes. Most of these results would have belonged to the category of science fiction a decade ago. However, the presented results are far from being immediate consequences of Zhang's famous theorem: they require various new ideas, other important properties of the applied sieve function and a closer analysis of the methods of Goldston-Pintz-Yildirim, Green-Tao, and Zhang, respectively

    Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 B.C.--2017) and another new proof

    Full text link
    In this article, we provide a comprehensive historical survey of 183 different proofs of famous Euclid's theorem on the infinitude of prime numbers. The author is trying to collect almost all the known proofs on infinitude of primes, including some proofs that can be easily obtained as consequences of some known problems or divisibility properties. Furthermore, here are listed numerous elementary proofs of the infinitude of primes in different arithmetic progressions. All the references concerning the proofs of Euclid's theorem that use similar methods and ideas are exposed subsequently. Namely, presented proofs are divided into 8 subsections of Section 2 in dependence of the methods that are used in them. {\bf Related new 14 proofs (2012-2017) are given in the last subsection of Section 2.} In the next section, we survey mainly elementary proofs of the infinitude of primes in different arithmetic progressions. Presented proofs are special cases of Dirichlet's theorem. In Section 4, we give a new simple "Euclidean's proof" of the infinitude of primes.Comment: 70 pages. In this extended third version of the article, 14 new proofs of the infnitude of primes are added (2012-2017
    corecore