118,251 research outputs found

    Status and challenges of simulations with dynamical fermions

    Full text link
    An overview over the current state of algorithms for dynamical fermion simulations is given. In particular some insight into the functioning of the determinant spitting techniques is discussed. The critical slowing down of the simulations towards the continuum limit and the role of the boundary conditions is also reviewed.Comment: 20 pages, 9 figures, plenary talk presented at the 30th International Symposium on Lattice Field Theory - Lattice 2012, June 24-29, 2012 Cairns, Australi

    Indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity

    Full text link
    We demonstrate purely resonant continuous-wave optical laser excitation to coherently prepare an excitonic state of a single semiconductor quantum dot (QDs) inside a high quality pillar microcavity. As a direct proof of QD resonance fluorescence, the evolution from a single emission line to the characteristic Mollow triplet10 is observed under increasing pump power. By controlled utilization of weak coupling between the emitter and the fundamental cavity mode through Purcell-enhancement of the radiative decay, a strong suppression of pure dephasing is achieved, which reflects in close to Fourier transform-limited and highly indistinguishable photons with a visibility contrast of 90%. Our experiments reveal the model-like character of the coupled QD-microcavity system as a promising source for the generation of ideal photons at the quantum limit. From a technological perspective, the vertical cavity symmetry -- with optional dynamic tunability -- provides strongly directed light emission which appears very desirable for future integrated emitter devices.Comment: 24 pages, 6 figure

    Several experimental realizations of symmetric phase-covariant quantum cloner of single-photon qubits

    Full text link
    We compare several optical implementations of phase-covariant cloning machines. The experiments are based on copying of the polarization state of a single photon in bulk optics by special unbalanced beam splitter or by balanced beam splitter accompanied by a state filtering. Also the all-fiber based setup is discussed, where the information is encoded into spatial modes, i.e., the photon can propagate through two optical fibers. Each of the four implementations possesses some advantages and disadvantages that are discussed.Comment: 8 pages, 11 figure

    The Splitting of Branes on Orientifold Planes

    Full text link
    Continuing the study in hep-th/0004092 and hep-th/0004092, we investigate a non-trivial string dynamical process related to orientifold planes, i.e., the splitting of physical NS-branes and D(p+2)-branes on orientifold Op-planes. Creation or annihilation of physical Dp-branes usually accompanies the splitting process. In the particular case p=4, we use Seiberg-Witten curves as an independent method to check the results.Comment: 34 pages, 9 figure

    OSQP: An Operator Splitting Solver for Quadratic Programs

    Full text link
    We present a general-purpose solver for convex quadratic programs based on the alternating direction method of multipliers, employing a novel operator splitting technique that requires the solution of a quasi-definite linear system with the same coefficient matrix at almost every iteration. Our algorithm is very robust, placing no requirements on the problem data such as positive definiteness of the objective function or linear independence of the constraint functions. It can be configured to be division-free once an initial matrix factorization is carried out, making it suitable for real-time applications in embedded systems. In addition, our technique is the first operator splitting method for quadratic programs able to reliably detect primal and dual infeasible problems from the algorithm iterates. The method also supports factorization caching and warm starting, making it particularly efficient when solving parametrized problems arising in finance, control, and machine learning. Our open-source C implementation OSQP has a small footprint, is library-free, and has been extensively tested on many problem instances from a wide variety of application areas. It is typically ten times faster than competing interior-point methods, and sometimes much more when factorization caching or warm start is used. OSQP has already shown a large impact with tens of thousands of users both in academia and in large corporations
    • …
    corecore