870 research outputs found

    Piecewise Linear Models for the Quasiperiodic Transition to Chaos

    Full text link
    We formulate and study analytically and computationally two families of piecewise linear degree one circle maps. These families offer the rare advantage of being non-trivial but essentially solvable models for the phenomenon of mode-locking and the quasi-periodic transition to chaos. For instance, for these families, we obtain complete solutions to several questions still largely unanswered for families of smooth circle maps. Our main results describe (1) the sets of maps in these families having some prescribed rotation interval; (2) the boundaries between zero and positive topological entropy and between zero length and non-zero length rotation interval; and (3) the structure and bifurcations of the attractors in one of these families. We discuss the interpretation of these maps as low-order spline approximations to the classic ``sine-circle'' map and examine more generally the implications of our results for the case of smooth circle maps. We also mention a possible connection to recent experiments on models of a driven Josephson junction.Comment: 75 pages, plain TeX, 47 figures (available on request

    Entropy in Dimension One

    Full text link
    This paper completely classifies which numbers arise as the topological entropy associated to postcritically finite self-maps of the unit interval. Specifically, a positive real number h is the topological entropy of a postcritically finite self-map of the unit interval if and only if exp(h) is an algebraic integer that is at least as large as the absolute value of any of the conjugates of exp(h); that is, if exp(h) is a weak Perron number. The postcritically finite map may be chosen to be a polynomial all of whose critical points are in the interval (0,1). This paper also proves that the weak Perron numbers are precisely the numbers that arise as exp(h), where h is the topological entropy associated to ergodic train track representatives of outer automorphisms of a free group.Comment: 38 pages, 15 figures. This paper was completed by the author before his death, and was uploaded by Dylan Thurston. A version including endnotes by John Milnor will appear in the proceedings of the Banff conference on Frontiers in Complex Dynamic
    corecore