2 research outputs found

    AMOBH: Adaptive Multiobjective Black Hole Algorithm

    Get PDF
    This paper proposes a new multiobjective evolutionary algorithm based on the black hole algorithm with a new individual density assessment (cell density), called “adaptive multiobjective black hole algorithm” (AMOBH). Cell density has the characteristics of low computational complexity and maintains a good balance of convergence and diversity of the Pareto front. The framework of AMOBH can be divided into three steps. Firstly, the Pareto front is mapped to a new objective space called parallel cell coordinate system. Then, to adjust the evolutionary strategies adaptively, Shannon entropy is employed to estimate the evolution status. At last, the cell density is combined with a dominance strength assessment called cell dominance to evaluate the fitness of solutions. Compared with the state-of-the-art methods SPEA-II, PESA-II, NSGA-II, and MOEA/D, experimental results show that AMOBH has a good performance in terms of convergence rate, population diversity, population convergence, subpopulation obtention of different Pareto regions, and time complexity to the latter in most cases

    An adaptive multi-population differential artificial bee colony algorithm for many-objective service composition in cloud manufacturing

    Get PDF
    Several conflicting criteria must be optimized simultaneously during the service composition and optimal selection (SCOS) in cloud manufacturing, among which tradeoff optimization regarding the quality of the composite services is a key issue in successful implementation of manufacturing tasks. This study improves the artificial bee colony (ABC) algorithm by introducing a synergetic mechanism for food source perturbation, a new diversity maintenance strategy, and a novel computing resources allocation scheme to handle complicated many-objective SCOS problems. Specifically, differential evolution (DE) operators with distinct search behaviors are integrated into the ABC updating equation to enhance the level of information exchange between the foraging bees, and the control parameters for reproduction operators are adapted independently. Meanwhile, a scalarization based approach with active diversity promotion is used to enhance the selection pressure. In this proposal, multiple size adjustable subpopulations evolve with distinct reproduction operators according to the utility of the generating offspring so that more computational resources will be allocated to the better performing reproduction operators. Experiments for addressing benchmark test instances and SCOS problems indicate that the proposed algorithm has a competitive performance and scalability behavior compared with contesting algorithms
    corecore