934,129 research outputs found

    Deep Quaternion Networks

    Full text link
    The field of deep learning has seen significant advancement in recent years. However, much of the existing work has been focused on real-valued numbers. Recent work has shown that a deep learning system using the complex numbers can be deeper for a fixed parameter budget compared to its real-valued counterpart. In this work, we explore the benefits of generalizing one step further into the hyper-complex numbers, quaternions specifically, and provide the architecture components needed to build deep quaternion networks. We develop the theoretical basis by reviewing quaternion convolutions, developing a novel quaternion weight initialization scheme, and developing novel algorithms for quaternion batch-normalization. These pieces are tested in a classification model by end-to-end training on the CIFAR-10 and CIFAR-100 data sets and a segmentation model by end-to-end training on the KITTI Road Segmentation data set. These quaternion networks show improved convergence compared to real-valued and complex-valued networks, especially on the segmentation task, while having fewer parametersComment: IJCNN 2018, 8 pages, 1 figur

    Computability of probability measures and Martin-Lof randomness over metric spaces

    Get PDF
    In this paper we investigate algorithmic randomness on more general spaces than the Cantor space, namely computable metric spaces. To do this, we first develop a unified framework allowing computations with probability measures. We show that any computable metric space with a computable probability measure is isomorphic to the Cantor space in a computable and measure-theoretic sense. We show that any computable metric space admits a universal uniform randomness test (without further assumption).Comment: 29 page

    A derivative for complex Lipschitz maps with generalised Cauchy–Riemann equations

    Get PDF
    AbstractWe introduce the Lipschitz derivative or the L-derivative of a locally Lipschitz complex map: it is a Scott continuous, compact and convex set-valued map that extends the classical derivative to the bigger class of locally Lipschitz maps and allows an extension of the fundamental theorem of calculus and a new generalisation of Cauchy–Riemann equations to these maps, which form a continuous Scott domain. We show that a complex Lipschitz map is analytic in an open set if and only if its L-derivative is a singleton at all points in the open set. The calculus of the L-derivative for sum, product and composition of maps is derived. The notion of contour integration is extended to Scott continuous, non-empty compact, convex valued functions on the complex plane, and by using the L-derivative, the fundamental theorem of contour integration is extended to these functions
    • …
    corecore