2,072 research outputs found

    Buying Logical Principles with Ontological Coin: The Metaphysical Lessons of Adding epsilon to Intuitionistic Logic

    Get PDF
    We discuss the philosophical implications of formal results showing the con- sequences of adding the epsilon operator to intuitionistic predicate logic. These results are related to Diaconescu’s theorem, a result originating in topos theory that, translated to constructive set theory, says that the axiom of choice (an “existence principle”) implies the law of excluded middle (which purports to be a logical principle). As a logical choice principle, epsilon allows us to translate that result to a logical setting, where one can get an analogue of Diaconescu’s result, but also can disentangle the roles of certain other assumptions that are hidden in mathematical presentations. It is our view that these results have not received the attention they deserve: logicians are unlikely to read a discussion because the results considered are “already well known,” while the results are simultaneously unknown to philosophers who do not specialize in what most philosophers will regard as esoteric logics. This is a problem, since these results have important implications for and promise signif i cant illumination of contem- porary debates in metaphysics. The point of this paper is to make the nature of the results clear in a way accessible to philosophers who do not specialize in logic, and in a way that makes clear their implications for contemporary philo- sophical discussions. To make the latter point, we will focus on Dummettian discussions of realism and anti-realism. Keywords: epsilon, axiom of choice, metaphysics, intuitionistic logic, Dummett, realism, antirealis

    CZF does not have the Existence Property

    Full text link
    Constructive theories usually have interesting metamathematical properties where explicit witnesses can be extracted from proofs of existential sentences. For relational theories, probably the most natural of these is the existence property, EP, sometimes referred to as the set existence property. This states that whenever (\exists x)\phi(x) is provable, there is a formula \chi(x) such that (\exists ! x)\phi(x) \wedge \chi(x) is provable. It has been known since the 80's that EP holds for some intuitionistic set theories and yet fails for IZF. Despite this, it has remained open until now whether EP holds for the most well known constructive set theory, CZF. In this paper we show that EP fails for CZF

    Constructive Mathematics in Theory and Programming Practice

    Get PDF
    The first part of the paper introduces the varieties of modern constructive mathematics, concentrating on Bishop’s constructive mathematics(BISH). It gives a sketch of both Myhill’s axiomatic system for BISH and a constructive axiomatic development of the real line R. The second part of the paper focuses on the relation between constructive mathematics and programming, with emphasis on Martin-Lof’s theory of types as a formal system for BISH

    On the existence of Stone-Cech compactification

    Full text link
    In [G. Curi, "Exact approximations to Stone-Cech compactification'', Ann. Pure Appl. Logic, 146, 2-3, 2007, pp. 103-123] a characterization is obtained of the locales of which the Stone-Cech compactification can be defined in constructive type theory CTT, and in the formal system CZF+uREA+DC, a natural extension of Aczel's system for constructive set theory CZF by a strengthening of the Regular Extension Axiom REA and the principle of dependent choice. In this paper I show that this characterization continues to hold over the standard system CZF plus REA, thus removing in particular any dependency from a choice principle. This will follow by a result of independent interest, namely the proof that the class of continuous mappings from a compact regular locale X to a regular a set-presented locale Y is a set in CZF, even without REA. It is then shown that the existence of Stone-Cech compactification of a non-degenerate Boolean locale is independent of the axioms of CZF (+REA), so that the obtained characterization characterizes a proper subcollection of the collection of all locales. The same also holds for several, even impredicative, extensions of CZF+REA, as well as for CTT. This is in contrast with what happens in the context of Higher-order Heyting arithmetic HHA - and thus in any topos-theoretic universe: by constructions of Johnstone, Banaschewski and Mulvey, within HHA Stone-Cech compactification can be defined for every locale

    A Topos Foundation for Theories of Physics: I. Formal Languages for Physics

    Get PDF
    This paper is the first in a series whose goal is to develop a fundamentally new way of constructing theories of physics. The motivation comes from a desire to address certain deep issues that arise when contemplating quantum theories of space and time. Our basic contention is that constructing a theory of physics is equivalent to finding a representation in a topos of a certain formal language that is attached to the system. Classical physics arises when the topos is the category of sets. Other types of theory employ a different topos. In this paper we discuss two different types of language that can be attached to a system, S. The first is a propositional language, PL(S); the second is a higher-order, typed language L(S). Both languages provide deductive systems with an intuitionistic logic. The reason for introducing PL(S) is that, as shown in paper II of the series, it is the easiest way of understanding, and expanding on, the earlier work on topos theory and quantum physics. However, the main thrust of our programme utilises the more powerful language L(S) and its representation in an appropriate topos.Comment: 36 pages, no figure
    • 

    corecore