11,475 research outputs found

    Service-Oriented Ad Hoc Grid Computing

    Get PDF
    Subject of this thesis are the design and implementation of an ad hoc Grid infrastructure. The vision of an ad hoc Grid further evolves conventional service-oriented Grid systems into a more robust, more flexible and more usable environment that is still standards compliant and interoperable with other Grid systems. A lot of work in current Grid middleware systems is focused on providing transparent access to high performance computing (HPC) resources (e.g. clusters) in virtual organizations spanning multiple institutions. The ad hoc Grid vision presented in this thesis exceeds this view in combining classical Grid components with more flexible components and usage models, allowing to form an environment combining dedicated HPC-resources with a large number of personal computers forming a "Desktop Grid". Three examples from medical research, media research and mechanical engineering are presented as application scenarios for a service-oriented ad hoc Grid infrastructure. These sample applications are also used to derive requirements for the runtime environment as well as development tools for such an ad hoc Grid environment. These requirements form the basis for the design and implementation of the Marburg ad hoc Grid Environment (MAGE) and the Grid Development Tools for Eclipse (GDT). MAGE is an implementation of a WSRF-compliant Grid middleware, that satisfies the criteria for an ad hoc Grid middleware presented in the introduction to this thesis. GDT extends the popular Eclipse integrated development environment by components that support application development both for traditional service-oriented Grid middleware systems as well as ad hoc Grid infrastructures such as MAGE. These development tools represent the first fully model driven approach to Grid service development integrated with infrastructure management components in service-oriented Grid computing. This thesis is concluded by a quantitative discussion of the performance overhead imposed by the presented extensions to a service-oriented Grid middleware as well as a discussion of the qualitative improvements gained by the overall solution. The conclusion of this thesis also gives an outlook on future developments and areas for further research. One of these qualitative improvements is "hot deployment" the ability to install and remove Grid services in a running node without interrupt to other active services on the same node. Hot deployment has been introduced as a novelty in service-oriented Grid systems as a result of the research conducted for this thesis. It extends service-oriented Grid computing with a new paradigm, making installation of individual application components a functional aspect of the application. This thesis further explores the idea of using peer-to-peer (P2P networking for Grid computing by combining a general purpose P2P framework with a standard compliant Grid middleware. In previous work the application of P2P systems has been limited to replica location and use of P2P index structures for discovery purposes. The work presented in this thesis also uses P2P networking to realize seamless communication accross network barriers. Even though the web service standards have been designed for the internet, the two-way communication requirement introduced by the WSRF-standards and particularly the notification pattern is not well supported by the web service standards. This defficiency can be answered by mechanisms that are part of such general purpose P2P communication frameworks. Existing security infrastructures for Grid systems focus on protection of data during transmission and access control to individual resources or the overall Grid environment. This thesis focuses on security issues within a single node of a dynamically changing service-oriented Grid environment. To counter the security threads arising from the new capabilities of an ad hoc Grid, a number of novel isolation solutions are presented. These solutions address security issues and isolation on a fine-grained level providing a range of applicable basic mechanisms for isolation, ranging from lightweight system call interposition to complete para-virtualization of the operating systems

    End-to-End QoS Support for a Medical Grid Service Infrastructure

    No full text
    Quality of Service support is an important prerequisite for the adoption of Grid technologies for medical applications. The GEMSS Grid infrastructure addressed this issue by offering end-to-end QoS in the form of explicit timeliness guarantees for compute-intensive medical simulation services. Within GEMSS, parallel applications installed on clusters or other HPC hardware may be exposed as QoS-aware Grid services for which clients may dynamically negotiate QoS constraints with respect to response time and price using Service Level Agreements. The GEMSS infrastructure and middleware is based on standard Web services technology and relies on a reservation based approach to QoS coupled with application specific performance models. In this paper we present an overview of the GEMSS infrastructure, describe the available QoS and security mechanisms, and demonstrate the effectiveness of our methods with a Grid-enabled medical imaging service

    High-Performance Cloud Computing: A View of Scientific Applications

    Full text link
    Scientific computing often requires the availability of a massive number of computers for performing large scale experiments. Traditionally, these needs have been addressed by using high-performance computing solutions and installed facilities such as clusters and super computers, which are difficult to setup, maintain, and operate. Cloud computing provides scientists with a completely new model of utilizing the computing infrastructure. Compute resources, storage resources, as well as applications, can be dynamically provisioned (and integrated within the existing infrastructure) on a pay per use basis. These resources can be released when they are no more needed. Such services are often offered within the context of a Service Level Agreement (SLA), which ensure the desired Quality of Service (QoS). Aneka, an enterprise Cloud computing solution, harnesses the power of compute resources by relying on private and public Clouds and delivers to users the desired QoS. Its flexible and service based infrastructure supports multiple programming paradigms that make Aneka address a variety of different scenarios: from finance applications to computational science. As examples of scientific computing in the Cloud, we present a preliminary case study on using Aneka for the classification of gene expression data and the execution of fMRI brain imaging workflow.Comment: 13 pages, 9 figures, conference pape

    Resilient Critical Infrastructure Management using Service Oriented Architecture

    No full text
    Abstract—The SERSCIS project aims to support the use of interconnected systems of services in Critical Infrastructure (CI) applications. The problem of system interconnectedness is aptly demonstrated by ‘Airport Collaborative Decision Making’ (ACDM). Failure or underperformance of any of the interlinked ICT systems may compromise the ability of airports to plan their use of resources to sustain high levels of air traffic, or to provide accurate aircraft movement forecasts to the wider European air traffic management systems. The proposed solution is to introduce further SERSCIS ICT components to manage dependability and interdependency. These use semantic models of the critical infrastructure, including its ICT services, to identify faults and potential risks and to increase human awareness of them. Semantics allows information and services to be described in such a way that makes them understandable to computers. Thus when a failure (or a threat of failure) is detected, SERSCIS components can take action to manage the consequences, including changing the interdependency relationships between services. In some cases, the components will be able to take action autonomously — e.g. to manage ‘local’ issues such as the allocation of CPU time to maintain service performance, or the selection of services where there are redundant sources available. In other cases the components will alert human operators so they can take action instead. The goal of this paper is to describe a Service Oriented Architecture (SOA) that can be used to address the management of ICT components and interdependencies in critical infrastructure systems. Index Terms—resilience; QoS; SOA; critical infrastructure, SLA

    Functional adaptivity for digital library services in e-infrastructures: the gCube approach

    Get PDF
    We consider the problem of e-Infrastructures that wish to reconcile the generality of their services with the bespoke requirements of diverse user communities. We motivate the requirement of functional adaptivity in the context of gCube, a service-based system that integrates Grid and Digital Library technologies to deploy, operate, and monitor Virtual Research Environments deïŹned over infrastructural resources. We argue that adaptivity requires mapping service interfaces onto multiple implementations, truly alternative interpretations of the same functionality. We then analyse two design solutions in which the alternative implementations are, respectively, full-ïŹ‚edged services and local components of a single service. We associate the latter with lower development costs and increased binding ïŹ‚exibility, and outline a strategy to deploy them dynamically as the payload of service plugins. The result is an infrastructure in which services exhibit multiple behaviours, know how to select the most appropriate behaviour, and can seamlessly learn new behaviours

    Forum Session at the First International Conference on Service Oriented Computing (ICSOC03)

    Get PDF
    The First International Conference on Service Oriented Computing (ICSOC) was held in Trento, December 15-18, 2003. The focus of the conference ---Service Oriented Computing (SOC)--- is the new emerging paradigm for distributed computing and e-business processing that has evolved from object-oriented and component computing to enable building agile networks of collaborating business applications distributed within and across organizational boundaries. Of the 181 papers submitted to the ICSOC conference, 10 were selected for the forum session which took place on December the 16th, 2003. The papers were chosen based on their technical quality, originality, relevance to SOC and for their nature of being best suited for a poster presentation or a demonstration. This technical report contains the 10 papers presented during the forum session at the ICSOC conference. In particular, the last two papers in the report ere submitted as industrial papers

    Big Data Analytics for QoS Prediction Through Probabilistic Model Checking

    Get PDF
    As competitiveness increases, being able to guaranting QoS of delivered services is key for business success. It is thus of paramount importance the ability to continuously monitor the workflow providing a service and to timely recognize breaches in the agreed QoS level. The ideal condition would be the possibility to anticipate, thus predict, a breach and operate to avoid it, or at least to mitigate its effects. In this paper we propose a model checking based approach to predict QoS of a formally described process. The continous model checking is enabled by the usage of a parametrized model of the monitored system, where the actual value of parameters is continuously evaluated and updated by means of big data tools. The paper also describes a prototype implementation of the approach and shows its usage in a case study.Comment: EDCC-2014, BIG4CIP-2014, Big Data Analytics, QoS Prediction, Model Checking, SLA compliance monitorin

    A Semantic Grid Oriented to E-Tourism

    Full text link
    With increasing complexity of tourism business models and tasks, there is a clear need of the next generation e-Tourism infrastructure to support flexible automation, integration, computation, storage, and collaboration. Currently several enabling technologies such as semantic Web, Web service, agent and grid computing have been applied in the different e-Tourism applications, however there is no a unified framework to be able to integrate all of them. So this paper presents a promising e-Tourism framework based on emerging semantic grid, in which a number of key design issues are discussed including architecture, ontologies structure, semantic reconciliation, service and resource discovery, role based authorization and intelligent agent. The paper finally provides the implementation of the framework.Comment: 12 PAGES, 7 Figure

    Evaluating XMPP Communication in IEC 61499-based Distributed Energy Applications

    Full text link
    The IEC 61499 reference model provides an international standard developed specifically for supporting the creation of distributed event-based automation systems. Functionality is abstracted into function blocks which can be coded graphically as well as via a text-based method. As one of the design goals was the ability to support distributed control applications, communication plays a central role in the IEC 61499 specification. In order to enable the deployment of functionality to distributed platforms, these platforms need to exchange data in a variety of protocols. IEC 61499 realizes the support of these protocols via "Service Interface Function Blocks" (SIFBs). In the context of smart grids and energy applications, IEC 61499 could play an important role, as these applications require coordinating several distributed control logics. Yet, the support of grid-related protocols is a pre-condition for a wide-spread utilization of IEC 61499. The eXtensible Messaging and Presence Protocol (XMPP) on the other hand is a well-established protocol for messaging, which has recently been adopted for smart grid communication. Thus, SIFBs for XMPP facilitate distributed control applications, which use XMPP for exchanging all control relevant data, being realized with the help of IEC 61499. This paper introduces the idea of integrating XMPP into SIFBs, demonstrates the prototypical implementation in an open source IEC 61499 platform and provides an evaluation of the feasibility of the result.Comment: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA
    • 

    corecore