13,003 research outputs found

    An Advanced Heuristic for Multiple-Option Spare Parts Procurement after End-of-Production

    Get PDF
    After-sales service is a major profit generator for more and more OEMs in industries with durable products. Successful engagement in after-sales service improves customer loyalty and allows for competitive differentiation through superior service like an extended service period after end of production during which customers are guaranteed to be provided with service parts. In order to fulfill the service guarantee in these cases, an effective and efficient spare parts management has to be implemented, which is challenging due to the high uncertainty concerning spare parts demand over such a long time horizon. The traditional way of spare parts acquisition for the service phase is to set up a huge final lot at the end of regular production of the parent product which is sufficient to fulfill demand up to the end of the service time. This strategy results in extremely high inventory levels over a long period and generates major holding costs and a high level of obsolescence risk. With increasing service time more flexible options for spare parts procurement after end of production gain more and more importance. In our paper we focus on the two most relevant ones, namely extra production and remanufacturing. Managing all three options leads to a complicated stochastic dynamic decision problem. For that problem type, however, a quite simple combined decision rule with order-up-to levels for extra production and remanufacturing turns out to be very effective. We propose a heuristic procedure for parameter determination which accounts for the main stochastic and dynamic interactions between the different order-up-to levels, but still consists of quite simple calculations so that it can be applied to problem instances of arbitrary size. In a numerical study we show that this heuristic performs extremely well under a wide range of conditions so that it can be strongly recommended as a decision support tool for the multi-option spare parts procurement problem.Spare Parts, Inventory Management, Reverse Logistics, Final Order

    An Advanced Heuristic for Multiple-Option Spare Parts Procurement after End-of-Production

    Get PDF
    After-sales service is a major profit generator for more and more OEMs in industries with durable products. Successful engagement in after-sales service improves customer loyalty and allows for competitive differentiation through superior service like an extended service period after end of production during which customers are guaranteed to be provided with service parts. In order to fulfill the service guarantee in these cases, an effective and efficient spare parts management has to be implemented, which is challenging due to the high uncertainty concerning spare parts demand over such a long time horizon. The traditional way of spare parts acquisition for the service phase is to set up a huge final lot at the end of regular production of the parent product which is sufficient to fulfill demand up to the end of the service time. This strategy results in extremely high inventory levels over a long period and generates major holding costs and a high level of obsolescence risk. With increasing service time more flexible options for spare parts procurement after end of production gain more and more importance. In our paper we focus on the two most relevant ones, namely extra production and remanufacturing. Managing all three options leads to a complicated stochastic dynamic decision problem. For that problem type, however, a quite simple combined decision rule with order-up-to levels for extra production and remanufacturing turns out to be very effective. We propose a heuristic procedure for parameter determination which accounts for the main stochastic and dynamic interactions between the different order-up-to levels, but still consists of quite simple calculations so that it can be applied to problem instances of arbitrary size. In a numerical study we show that this heuristic performs extremely well under a wide range of conditions so that it can be strongly recommended as a decision support tool for the multi-option spare parts procurement problem

    Service differentiation and inventory management for spare parts in multi-level hierarchical systems

    Get PDF
    The after-sales parts sector is a demanding and lucrative business with significant growth the last few years. Often, different groups of customers require different levels of service and this aspect of business is a critical element for the success of their logistics structure. Service differentiation affects inventory decisions as well as the location of service facilities. As a result, inventory decisions need to be made according to different emerging patterns of placement. In such a decentralized environment, inventory availability and cost are the most important features that need to be addressed and optimal solution is given through a trade-off of those two parameters. The research is aiming to study the effects on inventory levels and cost of the different location patterns and then compare the results between an open loop and a closed loop system

    On two-echelon inventory systems with Poisson demand and lost sales

    Get PDF
    We derive approximations for the service levels of two-echelon inventory systems with lost sales and Poisson demand. Our method is simple and accurate for a very broad range of problem instances, including cases with both high and low service levels. In contrast, existing methods only perform well for limited problem settings, or under restrictive assumptions.\u

    Last Time Buy and Control Policies With Phase-Out Returns: A Case Study in Plant Control Systems

    Get PDF
    This research involves the combination of spare parts management and reverse logistics. At the end of the product life cycle, products in the field (so called installed base) can usually be serviced by either new parts, obtained from a Last Time Buy, or by repaired failed parts. This paper, however, introduces a third source: the phase-out returns obtained from customers that replace systems. These returned parts may serve other customers that do not replace the systems yet. Phase-out return flows represent higher volumes and higher repair yields than failed parts and are cheaper to get than new ones. This new phenomenon has been ignored in the literature thus far, but due to increased product replacements rates its relevance will grow. We present a generic model, applied in a case study with real-life data from ConRepair, a third-party service provider in plant control systems (mainframes). Volumes of demand for spares, defects returns and phase-out returns are interrelated, because the same installed base is involved. In contrast with the existing literature, this paper explicitly models the operational control of both failed- and phase-out returns, which proves far from trivial given the nonstationary nature of the problem. We have to consider subintervals within the total planning interval to optimize both Last Time Buy and control policies well. Given the novelty of the problem, we limit ourselves to a single customer, single-item approach. Our heuristic solution methods prove efficient and close to optimal when validated. The resulting control policies in the case-study are also counter-intuitive. Contrary to (management) expectations, exogenous variables prove to be more important to the repair firm (which we show by sensitivity analysis) and optimizing the endogenous control policy benefits the customers. Last Time Buy volume does not make the decisive difference; far more important is the disposal versus repair policy. PUSH control policy is outperformed by PULL, which exploits demand information and waits longer to decide between repair and disposal. The paper concludes by mapping a number of extensions for future research, as it represents a larger class of problems.spare parts;reverse logistics;phase-out;PUSH-PULL repair;non stationary;Last Time Buy;business case

    Research on the Comparison between the Different Policies by Service Level and Inventory Level Performance of Auto Parts in N.A.C.C. (North Automobile Components Company)

    Get PDF
    As after sales services become more and more popular, particularly preventive or corrective maintenance, the intervention and repair of the customer’s goods in a timely and efficient manner ensure customer satisfaction and contribute to the establishment of brand image in the market of the suppliers. The availability and quality of spare parts are key elements of this strategy while ensuring minimal management costs. The reuse of spare parts retrieved from customer systems is a growing maintenance strategy practice which impacts the traditional spare parts supply chain. This reuse is primarily driven by extending the economic life of goods, initially regarded as waste and therefore without added value, by transforming them into valuable spare parts that can be reused; secondly, for environmental or regulatory reasons, demanding responsibility for the treatment of products at the end of their life; and thirdly, to improve the availability of parts for maintenance, especially parts that the organization can no longer purchase or that are impacted by other issues. It also involves the analysis of their condition and their eventual return to working order as they are retrieved from the customer’s systems in a defective condition. In this paper, we will identify and classify the different customers and spare parts by estimating the critical level of rationing policy based on forecasts, identify the thresholds of inventory management policies, and finally, compare the different policies by service level and inventory level performance for the N.A.C.C. company

    Customer Differentiated End-of-Life Inventory Problem

    Get PDF
    This paper deals with the service parts end-of-life inventory problem in a circumstance that demands for service parts are differentiated. Customer differentiation might be due to criticality of the demand or based on various service contracts. In both cases, we model the problem as a finite horizon stochastic dynamic program and characterize the structure of the optimal policy. We show that when customers are differentiated based on the demand criticality then the optimal structure consists of time and state dependent threshold levels for inventory rationing. In case of differentiation based on service contracts, we show that in addition to rationing thresholds we also need contract extension thresholds by which the system decides whether to offer an extension to an expiring contract or not. By numerical experiments in both cases, we identify the value of incorporating such decisions in service parts end-of-life inventory management with customer differentiation. Moreover, we show that these decisions not only result in cost efficiency but also decrease the risk of part obsolescence drastically

    Strategies for dynamic appointment making by container terminals

    Get PDF
    We consider a container terminal that has to make appointments with barges dynamically, in real-time, and partly automatic. The challenge for the terminal is to make appointments with only limited knowledge about future arriving barges, and in the view of uncertainty and disturbances, such as uncertain arrival and handling times, as well as cancellations and no-shows. We illustrate this problem using an innovative implementation project which is currently running in the Port of Rotterdam. This project aims to align barge rotations and terminal quay schedules by means of a multi-agent system. In this\ud paper, we take the perspective of a single terminal that will participate in this planning system, and focus on the decision making capabilities of its intelligent agent. We focus on the question how the terminal operator can optimize, on an operational level, the utilization of its quay resources, while making reliable appointments with barges, i.e., with a guaranteed departure time. We explore two approaches: (i) an analytical approach based on the value of having certain intervals within the schedule and (ii) an approach based on sources of exibility that are naturally available to the terminal. We use simulation to get insight in the benefits of these approaches. We conclude that a major increase in utilization degree could be achieved only by deploying the sources of exibility, without harming the waiting time of barges too much
    • 

    corecore