1,214,148 research outputs found

    Lock-free Concurrent Data Structures

    Full text link
    Concurrent data structures are the data sharing side of parallel programming. Data structures give the means to the program to store data, but also provide operations to the program to access and manipulate these data. These operations are implemented through algorithms that have to be efficient. In the sequential setting, data structures are crucially important for the performance of the respective computation. In the parallel programming setting, their importance becomes more crucial because of the increased use of data and resource sharing for utilizing parallelism. The first and main goal of this chapter is to provide a sufficient background and intuition to help the interested reader to navigate in the complex research area of lock-free data structures. The second goal is to offer the programmer familiarity to the subject that will allow her to use truly concurrent methods.Comment: To appear in "Programming Multi-core and Many-core Computing Systems", eds. S. Pllana and F. Xhafa, Wiley Series on Parallel and Distributed Computin

    Do quasi-regular structures really exist in the solar photosphere? I. Observational evidence

    Full text link
    Two series of solar-granulation images -- the La Palma series of 5 June 1993 and the SOHO MDI series of 17--18 January 1997 -- are analysed both qualitatively and quantitatively. New evidence is presented for the existence of long-lived, quasi-regular structures (first reported by Getling and Brandt (2002)), which no longer appear unusual in images averaged over 1--2-h time intervals. Such structures appear as families of light and dark concentric rings or families of light and dark parallel strips (``ridges'' and ``trenches'' in the brightness distributions). In some cases, rings are combined with radial ``spokes'' and can thus form ``web'' patterns. The characteristic width of a ridge or trench is somewhat larger than the typical size of granules. Running-average movies constructed from the series of images are used to seek such structures. An algorithm is developed to obtain, for automatically selected centres, the radial distributions of the azimuthally averaged intensity, which highlight the concentric-ring patterns. We also present a time-averaged granulation image processed with a software package intended for the detection of geological structures in aerospace images. A technique of running-average-based correlations between the brightness variations at various points of the granular field is developed and indications are found for a dynamical link between the emergence and sinking of hot and cool parcels of the solar plasma. In particular, such a correlation analysis confirms our suggestion that granules -- overheated blobs -- may repeatedly emerge on the solar surface. Based on our study, the critical remarks by Rast (2002) on the original paper by Getling and Brandt (2002) can be dismissed.Comment: 21 page, 8 figures; accepted by "Solar Physics

    Spin-Charge Coupling in lightly doped Nd2x_{2-x}Cex_{x}CuO4_4

    Full text link
    We use neutron scattering to study the influence of a magnetic field on spin structures of Nd2_2CuO4_4. On cooling from room temperature, Nd2_2CuO4_4 goes through a series of antiferromagnetic (AF) phase transitions with different noncollinear spin structures. While a c-axis aligned magnetic field does not alter the basic zero-field noncollinear spin structures, a field parallel to the CuO2_2 plane can transform the noncollinear structure to a collinear one ("spin-flop" transition), induce magnetic disorder along the c-axis, and cause hysteresis in the AF phase transitions. By comparing these results directly to the magnetoresistance (MR) measurements of Nd1.975_{1.975}Ce0.025_{0.025}CuO4_4, which has essentially the same AF structures as Nd2_2CuO4_4, we find that a magnetic-field-induced spin-flop transition, AF phase hysteresis, and spin c-axis disorder all affect the transport properties of the material. Our results thus provide direct evidence for the existence of a strong spin-charge coupling in electron-doped copper oxides.Comment: 12 pages, 12 figure

    An exact plane-stress solution for a class of problems in orthotropic elasticity

    Get PDF
    An exact solution for the stress field within a rectangular slab of orthotropic material is found using a two dimensional Fourier series formulation. The material is required to be in plane stress, with general stress boundary conditions, and the principle axes of the material must be parallel to the sides of the rectangle. Two load cases similar to those encountered in materials testing are investigated using the solution. The solution method has potential uses in stress analysis of composite structures

    Composition laws for learning curves of industrial manufacturingprocesses

    No full text
    The theory of learning curves is widely investigated in many fields related to production planning, quality improvement and cost analysis. Many different approaches to describe the learning mechanism of a process are reported in the academic literature. The aim is to analyse the behaviour of complex systems composed of a network of elementary processes whose learning curve is known. Composition laws of two basic aggregation structures, series and parallel, are discussed and analysed. The effects of these composition laws are shown in a series of practical examples
    corecore