5 research outputs found

    Serially concatenated unity-rate codes improve quantum codes without coding-rate reduction

    No full text
    Inspired by the astounding performance of the unity rate code (URC) aided classical coding and detection schemes, we conceive a quantum URC (QURC) for assisting the design of concatenated quantum codes. Unfortunately, a QURC cannot be simultaneously recursive as well as non-catastrophic. However, we demonstrate that, despite being non-recursive, our proposed QURC yields efficient concatenated codes, which exhibit a low error rate and a beneficial interleaver gain, provided that the coding scheme is carefully designed with the aid of EXtrinsic Information Transfer (EXIT) charts

    Research Data: Serially Concatenated Unity-Rate Codes Improve Quantum Codes Without Coding-Rate Reduction

    No full text
    Inspired by the astounding performance of the unity rate code (URC) aided classical coding and detection schemes, we conceive a quantum URC (QURC) for assisting the design of concatenated quantum codes. Unfortunately, a QURC cannot be simultaneously recursive as well as non-catastrophic. However, we demonstrate that, despite being non-recursive, our proposed QURC yields efficient concatenated codes, which exhibit a low error rate and a beneficial interleaver gain, provided that the coding scheme is carefully designed with the aid of EXtrinsic Information Transfer (EXIT) charts.</span
    corecore