3,179 research outputs found
Recommended from our members
Serial representation of items during working memory maintenance at letter-selective cortical sites
A key component of working memory is the ability to remember multiple items simultaneously. To understand how the human brain maintains multiple items in memory, we examined direct brain recordings of neural oscillations from neurosurgical patients as they performed a working memory task. We analyzed the data to identify the neural representations of individual memory items by identifying recording sites with broadband gamma activity that varied according to the identity of the letter a subject viewed. Next, we tested a previously proposed model of working memory, which had hypothesized that the neural representations of individual memory items sequentially occurred at different phases of the theta/alpha cycle. Consistent with this model, the phase of the theta/alpha oscillation when stimulus-related gamma activity occurred during maintenance reflected the order of list presentation. These results suggest that working memory is organized by a cortical phase code coordinated by coupled theta/alpha and gamma oscillations and, more broadly, provide support for the serial representation of items in working memory
From Parallel Sequence Representations to Calligraphic Control: A Conspiracy of Neural Circuits
Calligraphic writing presents a rich set of challenges to the human movement control system. These challenges include: initial learning, and recall from memory, of prescribed stroke sequences; critical timing of stroke onsets and durations; fine control of grip and contact forces; and letter-form invariance under voluntary size scaling, which entails fine control of stroke direction and amplitude during recruitment and derecruitment of musculoskeletal degrees of freedom. Experimental and computational studies in behavioral neuroscience have made rapid progress toward explaining the learning, planning and contTOl exercised in tasks that share features with calligraphic writing and drawing. This article summarizes computational neuroscience models and related neurobiological data that reveal critical operations spanning from parallel sequence representations to fine force control. Part one addresses stroke sequencing. It treats competitive queuing (CQ) models of sequence representation, performance, learning, and recall. Part two addresses letter size scaling and motor equivalence. It treats cursive handwriting models together with models in which sensory-motor tmnsformations are performed by circuits that learn inverse differential kinematic mappings. Part three addresses fine-grained control of timing and transient forces, by treating circuit models that learn to solve inverse dynamics problems.National Institutes of Health (R01 DC02852
Functional imaging reveals working memory and attention interact to produce the attentional blink
Copyright @ 2012 Massachusetts Institute of Technology PressIf two centrally presented visual stimuli occur within approximately half a second of each other, the second target often fails to be reported correctly. This effect, called the attentional blink (AB; Raymond, J. E., Shapiro, K. L., & Arnell, K. M. Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology, Human Perception and Performance, 18, 849-860, 1992], has been attributed to a resource "bottleneck," likely arising as a failure of attention during encoding into or retrieval from visual working memory (WM). Here we present participants with a hybrid WM-AB study while they undergo fMRI to provide insight into the neural underpinnings of this bottleneck. Consistent with a WM-based bottleneck account, fronto-parietal brain areas exhibited a WM load-dependent modulation of neural responses during the AB task. These results are consistent with the view that WM and attention share a capacity-limited resource and provide insight into the neural structures that underlie resource allocation in tasks requiring joint use of WM and attention.This research was supported by a project grant (071944) from the Wellcome Trust to Kimron Shapiro
The neural basis of attentional control in visual search
How do we localise and identify target objects among distractors in visual scenes? The role of selective attention in visual search has been studied for decades and the outlines of a general processing model are now beginning to emerge. Attentional processes unfold in real time and this review describes four temporally and functionally dissociable stages of attention in visual search (preparation, guidance, selection, and identification). Insights from neuroscientific studies of visual attention suggest that our ability to find target objects in visual search is based on processes that operate at each of these four stages, in close association with working memory and recurrent feedback mechanisms
Implicit and explicit learning of event sequences: an analysis with event-related brain potentials.
A Boost and Bounce theory of temporal attention
What is the time course of visual attention? Attentional blink studies have found that the 2nd of 2 targets is often missed when presented within about 500 ms from the 1st target, resulting in theories about relatively long-lasting capacity limitations or bottlenecks. Earlier studies, however, reported quite the opposite finding: Attention is transiently enhanced, rather than reduced, for several hundreds of milliseconds after a relevant event. The authors present a general theory, as well as a working computational model, that integrate these findings. There is no central role for capacity limitations or bottlenecks. Central is a rapidly responding gating system (or attentional filter) that seeks to enhance relevant and suppress irrelevant information. When items sufficiently match the target description, they elicit transient excitatory feedback activity (a "boost" function), meant to provide access to working memory. However, in the attentional blink task, the distractor after the target is accidentally boosted, resulting in subsequent strong inhibitory feedback response (a "bounce"), which, in effect, closes the gate to working memory. The theory explains many findings that are problematic for limited-capacity accounts, including a new experiment showing that the attentional blink can be postponed. © 2008 American Psychological Association
The attentional blink impairs detection and delays encoding of visual information: Evidence from human electrophysiology
This article explores the time course of the functional interplay between detection and encoding stages of information processing in the brain and the role they play in conscious visual perception. We employed a multitarget rapid serial visual presentation (RSVP) approach and examined the electrophysiological P3 component elicited by a target terminating an RSVP sequence. Target-locked P3 activity was detected both at frontal and parietal recording sites and an independent component analysis confirmed the presence of two distinct P3 components. The posterior P3b varied with intertarget lag, with diminished amplitude and postponed latency at short relative to long lags—an electroencephalographic signature of the attentional blink (AB). Under analogous conditions, the anterior P3a was also reduced in amplitude but did not vary in latency. Collectively, the results provide an electrophysiological record of the interaction between frontal and posterior components linked to detection (P3a) and encoding (P3b) of visual information. Our findings suggest that, although the AB delays target encoding into working memory, it does not slow down detection of a target but instead reduces the efficacy of this process. A functional characterization of P3a in attentive tasks is discussed with reference to current models of the AB phenomenon
An investigation into aripiprazole's partial D(2) agonist effects within the dorsolateral prefrontal cortex during working memory in healthy volunteers
Rationale:
Working memory impairments in schizophrenia have been attributed to dysfunction of the dorsolateral prefrontal cortex (DLPFC) which in turn may be due to low DLPFC dopamine innervation. Conventional antipsychotic drugs block DLPFC D2 receptors, and this may lead to further dysfunction and working memory impairments. Aripiprazole is a D2 receptor partial agonist hypothesised to enhance PFC dopamine functioning, possibly improving working memory.
Objectives:
We probed the implications of the partial D2 receptor agonist actions of aripiprazole within the DLPFC during working memory. Investigations were carried out in healthy volunteers to eliminate confounds of illness or medication status. Aripiprazole’s prefrontal actions were compared with the D2/5-HT2A blocker risperidone to separate aripiprazole’s unique prefrontal D2 agonist actions from its serotinergic and striatal D2 actions that it shares with risperidone.
Method:
A double-blind, placebo-controlled, parallel design was implemented. Participants received a single dose of either 5 mg aripiprazole, 1 mg risperidone or placebo before performing the n-back task whilst undergoing fMRI scanning.
Results:
Compared with placebo, the aripiprazole group demonstrated enhanced DLPFC activation associated with a trend for improved discriminability (d’) and speeded reaction times. In contrast to aripiprazole’s neural effects, the risperidone group demonstrated a trend for reduced DLPFC recruitment. Unexpectedly, the risperidone group demonstrated similar effects to aripiprazole on d’ and additionally had reduced errors of commission compared with placebo.
Conclusion:
Aripiprazole has unique DLPFC actions attributed to its prefrontal D2 agonist action. Risperidone’s serotinergic action that results in prefrontal dopamine release may have protected against any impairing effects of its prefrontal D2 blockade
Psychologie und Gehirn 2007
Die Fachtagung "Psychologie und Gehirn" ist eine traditionelle Tagung aus dem Bereich psychophysiologischer Grundlagenforschung. 2007 fand diese Veranstaltung, die 33. Jahrestagung der „Deutschen Gesellschaft für Psychophysiologie und ihre Anwendungen (DGPA)“, in Dortmund unter der Schirmherrschaft des Instituts für Arbeitsphysiologie (IfADo) statt. Neben der Grundlagenforschung ist auch die Umsetzung in die Anwendung erklärtes Ziel der DGPA und dieser Tradition folgend wurden Beiträge aus vielen Bereichen moderner Neurowissenschaft (Elektrophysiologie, bildgebende Verfahren, Peripherphysiologie, Neuroendokrinologie, Verhaltensgenetik, u.a.) präsentiert und liegen hier in Kurzform vor
- …
