2,706 research outputs found

    Split and Shift Methodology: Overcoming Hardware Limitations on Cellular Processor Arrays for Image Processing

    Get PDF
    Na era multimedia, o procesado de imaxe converteuse nun elemento de singular importancia nos dispositivos electrónicos. Dende as comunicacións (p.e. telemedicina), a seguranza (p.e. recoñecemento retiniano) ou control de calidade e de procesos industriais (p.e. orientación de brazos articulados, detección de defectos do produto), pasando pola investigación (p.e. seguimento de partículas elementais) e diagnose médica (p.e. detección de células estrañas, identificaciónn de veas retinianas), hai un sinfín de aplicacións onde o tratamento e interpretación automáticas de imaxe e fundamental. O obxectivo último será o deseño de sistemas de visión con capacidade de decisión. As tendencias actuais requiren, ademais, a combinación destas capacidades en dispositivos pequenos e portátiles con resposta en tempo real. Isto propón novos desafíos tanto no deseño hardware como software para o procesado de imaxe, buscando novas estruturas ou arquitecturas coa menor area e consumo de enerxía posibles sen comprometer a funcionalidade e o rendemento

    Current-Mode Techniques for the Implementation of Continuous- and Discrete-Time Cellular Neural Networks

    Get PDF
    This paper presents a unified, comprehensive approach to the design of continuous-time (CT) and discrete-time (DT) cellular neural networks (CNN) using CMOS current-mode analog techniques. The net input signals are currents instead of voltages as presented in previous approaches, thus avoiding the need for current-to-voltage dedicated interfaces in image processing tasks with photosensor devices. Outputs may be either currents or voltages. Cell design relies on exploitation of current mirror properties for the efficient implementation of both linear and nonlinear analog operators. These cells are simpler and easier to design than those found in previously reported CT and DT-CNN devices. Basic design issues are covered, together with discussions on the influence of nonidealities and advanced circuit design issues as well as design for manufacturability considerations associated with statistical analysis. Three prototypes have been designed for l.6-pm n-well CMOS technologies. One is discrete-time and can be reconfigured via local logic for noise removal, feature extraction (borders and edges), shadow detection, hole filling, and connected component detection (CCD) on a rectangular grid with unity neighborhood radius. The other two prototypes are continuous-time and fixed template: one for CCD and other for noise removal. Experimental results are given illustrating performance of these prototypes

    Combining multiple Iris matchers using advanced fusion techniques to enhance Iris matching performance

    Get PDF
    M.Phil. (Electrical And Electronic Engineering)The enormous increase in technology advancement and the need to secure information e ectively has led to the development and implementation of iris image acquisition technologies for automated iris recognition systems. The iris biometric is gaining popularity and is becoming a reliable and a robust modality for future biometric security. Its wide application can be extended to biometric security areas such as national ID cards, banking systems such as ATM, e-commerce, biometric passports but not applicable in forensic investigations. Iris recognition has gained valuable attention in biometric research due to the uniqueness of its textures and its high recognition rates when employed on high biometric security areas. Identity veri cation for individuals becomes a challenging task when it has to be automated with a high accuracy and robustness against spoo ng attacks and repudiation. Current recognition systems are highly a ected by noise as a result of segmentation failure, and this noise factors increase the biometric error rates such as; the FAR and the FRR. This dissertation reports an investigation of score level fusion methods which can be used to enhance iris matching performance. The fusion methods implemented in this project includes, simple sum rule, weighted sum rule fusion, minimum score and an adaptive weighted sum rule. The proposed approach uses an adaptive fusion which maps feature quality scores with the matcher. The fused scores were generated from four various iris matchers namely; the NHD matcher, the WED matcher, the WHD matcher and the POC matcher. To ensure homogeneity of matching scores before fusion, raw scores were normalized using the tanh-estimators method, because it is e cient and robust against outliers. The results were tested against two publicly available databases; namely, CASIA and UBIRIS using two statistical and biometric system measurements namely the AUC and the EER. The results of these two measures gives the AUC = 99:36% for CASIA left images, the AUC = 99:18% for CASIA right images, the AUC = 99:59% for UBIRIS database and the Equal Error Rate (EER) of 0.041 for CASIA left images, the EER = 0:087 for CASIA right images and with the EER = 0:038 for UBIRIS images

    A Computational Framework for the Structural Change Analysis of 3D Volumes of Microscopic Specimens

    Get PDF
    Glaucoma, commonly observed with an elevation in the intraocular pressure level (IOP), is one of the leading causes of blindness. The lamina cribrosa is a mesh-like structure that provides axonal support for the optic nerves leaving the eye. The changes in the laminar structure under IOP elevations may result in the deaths of retinal ganglion cells, leading to vision degradation and loss. We have developed a comprehensive computational framework that can assist the study of structural changes in microscopic structures such as lamina cribrosa. The optical sectioning property of a confocal microscope facilitates imaging thick microscopic specimen at various depths without physical sectioning. The confocal microscope images are referred to as optical sections. The computational framework developed includes: 1) a multi-threaded system architecture for tracking a volume-of-interest within a microscopic specimen in a parallel computation environment using a reliable-multicast for collective-communication operations 2) a Karhunen-Loève (KL) expansion based adaptive noise prefilter for the restoration of the optical sections using an inverse restoration method 3) a morphological operator based ringing metric to quantify the ringing artifacts introduced during iterative restoration of optical sections 4) a l2 norm based error metric to evaluate the performance of optical flow algorithms without a priori knowledge of the true motion field and 5) a Compute-and-Propagate (CNP) framework for iterative optical flow algorithms. The realtime tracking architecture can convert a 2D-confocal microscope into a 4D-confocal microscope with tracking. The adaptive KL filter is suitable for realtime restoration of optical sections. The CNP framework significantly improves the speed and convergence of the iterative optical flow algorithms. Also, the CNP framework can reduce the errors in the motion field estimates due to the aperture problem. The performance of the proposed framework is demonstrated on real-life image sequences and on z-Stack datasets of random cotton fibers and lamina cribrosa of a cow retina with an experimentally induced glaucoma. The proposed framework can be used for routine laboratory and clinical investigation of microstructures such as cells and tissues, for the evaluation of complex structures such as cornea and has potential use as a surgical guidance tool

    Design of a High-Speed Architecture for Stabilization of Video Captured Under Non-Uniform Lighting Conditions

    Get PDF
    Video captured in shaky conditions may lead to vibrations. A robust algorithm to immobilize the video by compensating for the vibrations from physical settings of the camera is presented in this dissertation. A very high performance hardware architecture on Field Programmable Gate Array (FPGA) technology is also developed for the implementation of the stabilization system. Stabilization of video sequences captured under non-uniform lighting conditions begins with a nonlinear enhancement process. This improves the visibility of the scene captured from physical sensing devices which have limited dynamic range. This physical limitation causes the saturated region of the image to shadow out the rest of the scene. It is therefore desirable to bring back a more uniform scene which eliminates the shadows to a certain extent. Stabilization of video requires the estimation of global motion parameters. By obtaining reliable background motion, the video can be spatially transformed to the reference sequence thereby eliminating the unintended motion of the camera. A reflectance-illuminance model for video enhancement is used in this research work to improve the visibility and quality of the scene. With fast color space conversion, the computational complexity is reduced to a minimum. The basic video stabilization model is formulated and configured for hardware implementation. Such a model involves evaluation of reliable features for tracking, motion estimation, and affine transformation to map the display coordinates of a stabilized sequence. The multiplications, divisions and exponentiations are replaced by simple arithmetic and logic operations using improved log-domain computations in the hardware modules. On Xilinx\u27s Virtex II 2V8000-5 FPGA platform, the prototype system consumes 59% logic slices, 30% flip-flops, 34% lookup tables, 35% embedded RAMs and two ZBT frame buffers. The system is capable of rendering 180.9 million pixels per second (mpps) and consumes approximately 30.6 watts of power at 1.5 volts. With a 1024×1024 frame, the throughput is equivalent to 172 frames per second (fps). Future work will optimize the performance-resource trade-off to meet the specific needs of the applications. It further extends the model for extraction and tracking of moving objects as our model inherently encapsulates the attributes of spatial distortion and motion prediction to reduce complexity. With these parameters to narrow down the processing range, it is possible to achieve a minimum of 20 fps on desktop computers with Intel Core 2 Duo or Quad Core CPUs and 2GB DDR2 memory without a dedicated hardware

    Nigeria Paper Currency Serial Number Pattern Recognition System for Crimes Control

    Get PDF
    Only secured and conducive environment void of robbery, kidnapping, fake currency and all forms of insurgencies will foster production and distribution of goods, investment and saving that enhance national economic growth and development. This is a mirage in a country generally believed and tagged the giant of African; Nigeria. Crime, in whatever name or nomenclature, has a significant negative impact on the welfare and economy prosperities of our society. The urge to get rich promotes Crime like armed robbery, kidnapping for ransom and production of counterfeit banknotes to mention but a few. Innocent people have suffered psychological distress, fear, anger, depression, physical harm, financial loss and in most cases untimely death during the operations by these hoodlums. Banks, Cash-In-Transit Vehicle, and ATM points are often robbed by gangs in search for paper currency. Kidnappers as well demand for paper currency as ransom while some other gangs are involved in the production of counterfeit banknotes so as to enrich themselves no minding the negative effect on the nation’s economy.  The banknotes collected during the operations by the hoodlums are taken to banks. Yet, the banks will not detect or recognize any of these notes which attest to the fact that our system lacks check and balance. The system is very porous without a recourse to this era of technology when machine is trained to do virtually everything for our convenience. Currency as an entity has a unique identification number. The identification number is an alphanumeric currency issuance of about 10 digits comprises two (2) capital letters and eight (8) numbers usually positioned at a strategic location on either front or back of the 5, 10, 20, 50, 100, 200, 500 and 1000 naira notes. It is a reliable and intelligent system developed to track banknotes unique identifiers numbers- serial numbers, in order to control financial related crimes. Keywords: Nigeria Paper Currency Serial Number, Pattern Recognition DOI: 10.7176/IKM/11-3-04 Publication date: April 30th 202

    VLSI smart sensor-processor for fingerprint comparison

    Get PDF

    An investigation of potential applications of OP-SAPS: Operational Sampled Analog Processors

    Get PDF
    The application of OP-SAP's (operational sampled analog processors) in pattern recognition system is summarized. Areas investigated include: (1) human face recognition; (2) a high-speed programmable transversal filter system; (3) discrete word (speech) recognition; and (4) a resolution enhancement system

    Boolean Weightless Neural Network Architectures

    Get PDF
    A collection of hardware weightless Boolean elements has been developed. These form fundamental building blocks which have particular pertinence to the field of weightless neural networks. They have also been shown to have merit in their own right for the design of robust architectures. A major element of this is a collection of weightless Boolean sum and threshold techniques. These are fundamental building blocks which can be used in weightless architectures particularly within the field of weightless neural networks. Included in these is the implementation of L-max also known as N point thresholding. These elements have been applied to design a Boolean weightless hardware version of Austin’s ADAM neural network. ADAM is further enhanced by the addition of a new learning paradigm, that of non-Hebbian Learning. This new method concentrates on the association of ‘dis-similarity’, believing this is as important as areas of similarity. Image processing using hardware weightless neural networks is investigated through simulation of digital filters using a Type 1 Neuroram neuro-filter. Simulations have been performed using MATLAB to compare the results to a conventional median filter. Type 1 Neuroram has been tested on an extended collection of noise types. The importance of the threshold has been examined and the effect of cascading both types of filters was examined. This research has led to the development of several novel weightless hardware elements that can be applied to image processing. These patented elements include a weightless thermocoder and two weightless median filters. These novel robust high speed weightless filters have been compared with conventional median filters. The robustness of these architectures has been investigated when subjected to accelerated ground based generated neutron radiation simulating the atmospheric radiation spectrum experienced at commercial avionic altitudes. A trial investigating the resilience of weightless hardware Boolean elements in comparison to standard weighted arithmetic logic is detailed, examining the effects on the operation of the function when implemented on hardware experiencing high energy neutron bombardment induced single event effects. Further weightless Boolean elements are detailed which contribute to the development of a weightless implementation of the traditionally weighted self ordered map
    corecore