352,884 research outputs found
Mining Target-Oriented Sequential Patterns with Time-Intervals
A target-oriented sequential pattern is a sequential pattern with a concerned
itemset in the end of pattern. A time-interval sequential pattern is a
sequential pattern with time-intervals between every pair of successive
itemsets. In this paper we present an algorithm to discover target-oriented
sequential pattern with time-intervals. To this end, the original sequences are
reversed so that the last itemsets can be arranged in front of the sequences.
The contrasts between reversed sequences and the concerned itemset are then
used to exclude the irrelevant sequences. Clustering analysis is used with
typical sequential pattern mining algorithm to extract the sequential patterns
with time-intervals between successive itemsets. Finally, the discovered
time-interval sequential patterns are reversed again to the original order for
searching the target patterns.Comment: 11 pages, 9 table
Enriching Information to Prevent Bank Runs
Sequential service in the banking sector, as modeled by Diamondand Dybvig (1983), is a barrier to full insurance and potential source offinancial fragility against which deposit insurance is infeasible (Wallace,1988). In this paper, we pursue a different perspective, viewingthe sequence of contacts as opportunities to extract informationthrough a larger message space with commitment to richer promises.As we show, if preferences satisfy a separating property then the desiredelimination of dominated strategies (Green and Lin, 2003) occurseven when shocks are correlated. In this manner the sequential servicepromotes stability.
Sequential Posted Price Mechanisms with Correlated Valuations
We study the revenue performance of sequential posted price mechanisms and
some natural extensions, for a general setting where the valuations of the
buyers are drawn from a correlated distribution. Sequential posted price
mechanisms are conceptually simple mechanisms that work by proposing a
take-it-or-leave-it offer to each buyer. We apply sequential posted price
mechanisms to single-parameter multi-unit settings in which each buyer demands
only one item and the mechanism can assign the service to at most k of the
buyers. For standard sequential posted price mechanisms, we prove that with the
valuation distribution having finite support, no sequential posted price
mechanism can extract a constant fraction of the optimal expected revenue, even
with unlimited supply. We extend this result to the the case of a continuous
valuation distribution when various standard assumptions hold simultaneously.
In fact, it turns out that the best fraction of the optimal revenue that is
extractable by a sequential posted price mechanism is proportional to ratio of
the highest and lowest possible valuation. We prove that for two simple
generalizations of these mechanisms, a better revenue performance can be
achieved: if the sequential posted price mechanism has for each buyer the
option of either proposing an offer or asking the buyer for its valuation, then
a Omega(1/max{1,d}) fraction of the optimal revenue can be extracted, where d
denotes the degree of dependence of the valuations, ranging from complete
independence (d=0) to arbitrary dependence (d=n-1). Moreover, when we
generalize the sequential posted price mechanisms further, such that the
mechanism has the ability to make a take-it-or-leave-it offer to the i-th buyer
that depends on the valuations of all buyers except i's, we prove that a
constant fraction (2-sqrt{e})/4~0.088 of the optimal revenue can be always be
extracted.Comment: 29 pages, To appear in WINE 201
Testing sequential quantum measurements: how can maximal knowledge be extracted?
The extraction of information from a quantum system unavoidably implies a
modification of the measured system itself. It has been demonstrated recently
that partial measurements can be carried out in order to extract only a portion
of the information encoded in a quantum system, at the cost of inducing a
limited amount of disturbance. Here we analyze experimentally the dynamics of
sequential partial measurements carried out on a quantum system, focusing on
the trade-off between the maximal information extractable and the disturbance.
In particular we consider two different regimes of measurement, demonstrating
that, by exploiting an adaptive strategy, an optimal trade-off between the two
quantities can be found, as observed in a single measurement process. Such
experimental result, achieved for two sequential measurements, can be extended
to N measurement processes.Comment: 5 pages, 3 figure
Efficient Analysis of Pattern and Association Rule Mining Approaches
The process of data mining produces various patterns from a given data
source. The most recognized data mining tasks are the process of discovering
frequent itemsets, frequent sequential patterns, frequent sequential rules and
frequent association rules. Numerous efficient algorithms have been proposed to
do the above processes. Frequent pattern mining has been a focused topic in
data mining research with a good number of references in literature and for
that reason an important progress has been made, varying from performant
algorithms for frequent itemset mining in transaction databases to complex
algorithms, such as sequential pattern mining, structured pattern mining,
correlation mining. Association Rule mining (ARM) is one of the utmost current
data mining techniques designed to group objects together from large databases
aiming to extract the interesting correlation and relation among huge amount of
data. In this article, we provide a brief review and analysis of the current
status of frequent pattern mining and discuss some promising research
directions. Additionally, this paper includes a comparative study between the
performance of the described approaches.Comment: 14 pages, 3 figures. arXiv admin note: text overlap with
arXiv:1312.4800; and with arXiv:1109.2427 by other author
Convolutional RNN: an Enhanced Model for Extracting Features from Sequential Data
Traditional convolutional layers extract features from patches of data by
applying a non-linearity on an affine function of the input. We propose a model
that enhances this feature extraction process for the case of sequential data,
by feeding patches of the data into a recurrent neural network and using the
outputs or hidden states of the recurrent units to compute the extracted
features. By doing so, we exploit the fact that a window containing a few
frames of the sequential data is a sequence itself and this additional
structure might encapsulate valuable information. In addition, we allow for
more steps of computation in the feature extraction process, which is
potentially beneficial as an affine function followed by a non-linearity can
result in too simple features. Using our convolutional recurrent layers we
obtain an improvement in performance in two audio classification tasks,
compared to traditional convolutional layers. Tensorflow code for the
convolutional recurrent layers is publicly available in
https://github.com/cruvadom/Convolutional-RNN
MAT: A Multimodal Attentive Translator for Image Captioning
In this work we formulate the problem of image captioning as a multimodal
translation task. Analogous to machine translation, we present a
sequence-to-sequence recurrent neural networks (RNN) model for image caption
generation. Different from most existing work where the whole image is
represented by convolutional neural network (CNN) feature, we propose to
represent the input image as a sequence of detected objects which feeds as the
source sequence of the RNN model. In this way, the sequential representation of
an image can be naturally translated to a sequence of words, as the target
sequence of the RNN model. To represent the image in a sequential way, we
extract the objects features in the image and arrange them in a order using
convolutional neural networks. To further leverage the visual information from
the encoded objects, a sequential attention layer is introduced to selectively
attend to the objects that are related to generate corresponding words in the
sentences. Extensive experiments are conducted to validate the proposed
approach on popular benchmark dataset, i.e., MS COCO, and the proposed model
surpasses the state-of-the-art methods in all metrics following the dataset
splits of previous work. The proposed approach is also evaluated by the
evaluation server of MS COCO captioning challenge, and achieves very
competitive results, e.g., a CIDEr of 1.029 (c5) and 1.064 (c40)
- …
