3 research outputs found

    Optimizing Spectrum Trading in Cognitive Mesh Network Using Machine Learning

    Get PDF
    In a cognitive wireless mesh network, licensed users (primary users, PUs) may rent surplus spectrum to unlicensed users (secondary users, SUs) for getting some revenue. For such spectrum sharing paradigm, maximizing the revenue is the key objective of the PUs while that of the SUs is to meet their requirements. These complex contradicting objectives are embedded in our reinforcement learning (RL) model that is developed and implemented as shown in this paper. The objective function is defined as the net revenue gained by PUs from renting some of their spectrum. RL is used to extract the optimal control policy that maximizes the PUs’ profit continuously over time. The extracted policy is used by PUs to manage renting the spectrum to SUs and it helps PUs to adapt to the changing network conditions. Performance evaluation of the proposed spectrum trading approach shows that it is able to find the optimal size and price of spectrum for each primary user under different conditions. Moreover, the approach constitutes a framework for studying, synthesizing and optimizing other schemes. Another contribution is proposing a new distributed algorithm to manage spectrum sharing among PUs. In our scheme, PUs exchange channels dynamically based on the availability of neighbor’s idle channels. In our cooperative scheme, the objective of spectrum sharing is to maximize the total revenue and utilize spectrum efficiently. Compared to the poverty-line heuristic that does not consider the availability of unused spectrum, our scheme has the advantage of utilizing spectrum efficiently

    Machine Learning Approach for Spectrum Sharing in the Next Generation Cognitive Mesh Network

    Get PDF
    Nowadays, there is an unexpected explosion in the demand for wireless network resources. This is due to the dramatic increase in the number of the emerging web-based services. For wireless computer network, limited bandwidth along with the transmission quality requirements for users, make quality of service (QoS) provisioning a very challenging problem. To overcome spectrum scarcity problem, Federal Communications Commission (FCC) has already started working on the concept of spectrum sharing where unlicensed users (secondary users, SUs) can share the spectrum with licensed users (primary users, PUs), provided they respect PUs rights to use spectrum exclusively. Cognitive technology presents a revolutionary wireless communication where users can exploit the spectrum dynamically. The integration of cognitive technology capability into the conventional wireless networks is perhaps the significant promising architectural upgrade in the next generation of wireless network that helps to solve spectrum scarcity problem. In this work, we propose integrating cognitive technology with wireless mesh network to serve the maximum number of SUs by utilizing the limited bandwidth efficiently. The architecture for this network is selected first. In particular, we introduce the cluster-based architecture, signaling protocols, spectrum management scheme and detailed algorithms for the cognitive cycle. This new architecture is shown to be promising for the cognitive network. In order to manage the transmission power for the SUs in the cognitive wireless mesh network, a dynamic power management framework is developed based on machine learning to improve spectrum utilization while satisfying users requirements. Reinforcement learning (RL) is used to extract the optimal control policy that allocates spectrum and transmission powers for the SUs dynamically. RL is used to help users to adapt their resources to the changing network conditions. RL model considers the spectrum request arrival rate of the SUs, the interference constraint for the PUs, the physical properties of the channel that is selected for the SUs, PUs activities, and the QoS for SUs. In our work, PUs trade the unused spectrum to the SUs. For this sharing paradigm, maximizing the revenue is the key objective of the PUs, while that of the SUs is to meet their requirements and obtain service from the rented spectrum. However, PUs have to maintain their QoS when trading their spectrum. These complex conflicting objectives are embedded in our machine learning model. The objective function is defined as the net revenue gained by PUs from renting some of their spectrum. We use a machine learning to help the PUs to make a decision about the optimal size and price of the offered spectrum for trading. The trading model considers the QoS for PUs and SUs, traffic load at the PUs, the changes in the network conditions, and the revenues of the PUs. Finally, we integrate all the mechanisms described above to build a new cognitive network where users can interact intelligently with network conditions

    Sequential And Concurrent Auction Mechanisms For Dynamic Spectrum Access

    No full text
    With the ever growing demands for spectrum, authorities (e.g., FCC in United States) are defining ways that allow reallocation of spectrum bands that are under-utilized. In this regard, FCC made provisions to open under-utilized bands for both licensed and unlicensed services. A new paradigm called dynamic spectrum access (DSA) is being investigated that would allow wireless service providers (WSPs) to dynamically seek more spectrum when and where they need without interfering with the primary users. Currently, there is little understanding on how such a dynamic allocation of spectrum will operate so as to make the system feasible under economic terms. In this paper, we analyze the dynamic spectrum allocation process from an auction theoretic point of view where n WSPs (bidders) compete to acquire necessary spectrum band from a pool of m (n \u3e m) spectrum chunks. For the purpose of selfcoexistence, each of the WSPs is granted at most one chunk of spectrum to minimize interference among themselves and with licensed services. In this regard, we investigate both sequential and concurrent auction mechanisms to find WSPs\u27 optimal price bid and compare both the auction mechanisms in terms of revenue generated. We show that sequential auction is a better mechanism for DSA
    corecore