37,972 research outputs found

    Multi-Behavior Hypergraph-Enhanced Transformer for Sequential Recommendation

    Full text link
    Learning dynamic user preference has become an increasingly important component for many online platforms (e.g., video-sharing sites, e-commerce systems) to make sequential recommendations. Previous works have made many efforts to model item-item transitions over user interaction sequences, based on various architectures, e.g., recurrent neural networks and self-attention mechanism. Recently emerged graph neural networks also serve as useful backbone models to capture item dependencies in sequential recommendation scenarios. Despite their effectiveness, existing methods have far focused on item sequence representation with singular type of interactions, and thus are limited to capture dynamic heterogeneous relational structures between users and items (e.g., page view, add-to-favorite, purchase). To tackle this challenge, we design a Multi-Behavior Hypergraph-enhanced Transformer framework (MBHT) to capture both short-term and long-term cross-type behavior dependencies. Specifically, a multi-scale Transformer is equipped with low-rank self-attention to jointly encode behavior-aware sequential patterns from fine-grained and coarse-grained levels. Additionally, we incorporate the global multi-behavior dependency into the hypergraph neural architecture to capture the hierarchical long-range item correlations in a customized manner. Experimental results demonstrate the superiority of our MBHT over various state-of-the-art recommendation solutions across different settings. Further ablation studies validate the effectiveness of our model design and benefits of the new MBHT framework. Our implementation code is released at: https://github.com/yuh-yang/MBHT-KDD22.Comment: Published as a KDD'22 full pape

    Lifelong Sequential Modeling with Personalized Memorization for User Response Prediction

    Full text link
    User response prediction, which models the user preference w.r.t. the presented items, plays a key role in online services. With two-decade rapid development, nowadays the cumulated user behavior sequences on mature Internet service platforms have become extremely long since the user's first registration. Each user not only has intrinsic tastes, but also keeps changing her personal interests during lifetime. Hence, it is challenging to handle such lifelong sequential modeling for each individual user. Existing methodologies for sequential modeling are only capable of dealing with relatively recent user behaviors, which leaves huge space for modeling long-term especially lifelong sequential patterns to facilitate user modeling. Moreover, one user's behavior may be accounted for various previous behaviors within her whole online activity history, i.e., long-term dependency with multi-scale sequential patterns. In order to tackle these challenges, in this paper, we propose a Hierarchical Periodic Memory Network for lifelong sequential modeling with personalized memorization of sequential patterns for each user. The model also adopts a hierarchical and periodical updating mechanism to capture multi-scale sequential patterns of user interests while supporting the evolving user behavior logs. The experimental results over three large-scale real-world datasets have demonstrated the advantages of our proposed model with significant improvement in user response prediction performance against the state-of-the-arts.Comment: SIGIR 2019. Reproducible codes and datasets: https://github.com/alimamarankgroup/HPM
    • …
    corecore