952 research outputs found

    Exploring Auxiliary Context: Discrete Semantic Transfer Hashing for Scalable Image Retrieval

    Full text link
    Unsupervised hashing can desirably support scalable content-based image retrieval (SCBIR) for its appealing advantages of semantic label independence, memory and search efficiency. However, the learned hash codes are embedded with limited discriminative semantics due to the intrinsic limitation of image representation. To address the problem, in this paper, we propose a novel hashing approach, dubbed as \emph{Discrete Semantic Transfer Hashing} (DSTH). The key idea is to \emph{directly} augment the semantics of discrete image hash codes by exploring auxiliary contextual modalities. To this end, a unified hashing framework is formulated to simultaneously preserve visual similarities of images and perform semantic transfer from contextual modalities. Further, to guarantee direct semantic transfer and avoid information loss, we explicitly impose the discrete constraint, bit--uncorrelation constraint and bit-balance constraint on hash codes. A novel and effective discrete optimization method based on augmented Lagrangian multiplier is developed to iteratively solve the optimization problem. The whole learning process has linear computation complexity and desirable scalability. Experiments on three benchmark datasets demonstrate the superiority of DSTH compared with several state-of-the-art approaches

    A Comprehensive Survey on Cross-modal Retrieval

    Full text link
    In recent years, cross-modal retrieval has drawn much attention due to the rapid growth of multimodal data. It takes one type of data as the query to retrieve relevant data of another type. For example, a user can use a text to retrieve relevant pictures or videos. Since the query and its retrieved results can be of different modalities, how to measure the content similarity between different modalities of data remains a challenge. Various methods have been proposed to deal with such a problem. In this paper, we first review a number of representative methods for cross-modal retrieval and classify them into two main groups: 1) real-valued representation learning, and 2) binary representation learning. Real-valued representation learning methods aim to learn real-valued common representations for different modalities of data. To speed up the cross-modal retrieval, a number of binary representation learning methods are proposed to map different modalities of data into a common Hamming space. Then, we introduce several multimodal datasets in the community, and show the experimental results on two commonly used multimodal datasets. The comparison reveals the characteristic of different kinds of cross-modal retrieval methods, which is expected to benefit both practical applications and future research. Finally, we discuss open problems and future research directions.Comment: 20 pages, 11 figures, 9 table

    An Overview of Cross-media Retrieval: Concepts, Methodologies, Benchmarks and Challenges

    Full text link
    Multimedia retrieval plays an indispensable role in big data utilization. Past efforts mainly focused on single-media retrieval. However, the requirements of users are highly flexible, such as retrieving the relevant audio clips with one query of image. So challenges stemming from the "media gap", which means that representations of different media types are inconsistent, have attracted increasing attention. Cross-media retrieval is designed for the scenarios where the queries and retrieval results are of different media types. As a relatively new research topic, its concepts, methodologies and benchmarks are still not clear in the literatures. To address these issues, we review more than 100 references, give an overview including the concepts, methodologies, major challenges and open issues, as well as build up the benchmarks including datasets and experimental results. Researchers can directly adopt the benchmarks to promptly evaluate their proposed methods. This will help them to focus on algorithm design, rather than the time-consuming compared methods and results. It is noted that we have constructed a new dataset XMedia, which is the first publicly available dataset with up to five media types (text, image, video, audio and 3D model). We believe this overview will attract more researchers to focus on cross-media retrieval and be helpful to them.Comment: 14 pages, accepted by IEEE Transactions on Circuits and Systems for Video Technolog

    Unsupervised Multi-modal Hashing for Cross-modal retrieval

    Full text link
    With the advantage of low storage cost and high efficiency, hashing learning has received much attention in the domain of Big Data. In this paper, we propose a novel unsupervised hashing learning method to cope with this open problem to directly preserve the manifold structure by hashing. To address this problem, both the semantic correlation in textual space and the locally geometric structure in the visual space are explored simultaneously in our framework. Besides, the `2;1-norm constraint is imposed on the projection matrices to learn the discriminative hash function for each modality. Extensive experiments are performed to evaluate the proposed method on the three publicly available datasets and the experimental results show that our method can achieve superior performance over the state-of-the-art methods.Comment: 4 pages, 4 figure

    Attribute-Guided Network for Cross-Modal Zero-Shot Hashing

    Full text link
    Zero-Shot Hashing aims at learning a hashing model that is trained only by instances from seen categories but can generate well to those of unseen categories. Typically, it is achieved by utilizing a semantic embedding space to transfer knowledge from seen domain to unseen domain. Existing efforts mainly focus on single-modal retrieval task, especially Image-Based Image Retrieval (IBIR). However, as a highlighted research topic in the field of hashing, cross-modal retrieval is more common in real world applications. To address the Cross-Modal Zero-Shot Hashing (CMZSH) retrieval task, we propose a novel Attribute-Guided Network (AgNet), which can perform not only IBIR, but also Text-Based Image Retrieval (TBIR). In particular, AgNet aligns different modal data into a semantically rich attribute space, which bridges the gap caused by modality heterogeneity and zero-shot setting. We also design an effective strategy that exploits the attribute to guide the generation of hash codes for image and text within the same network. Extensive experimental results on three benchmark datasets (AwA, SUN, and ImageNet) demonstrate the superiority of AgNet on both cross-modal and single-modal zero-shot image retrieval tasks.Comment: 9 pages, 8 figure

    Shared Predictive Cross-Modal Deep Quantization

    Full text link
    With explosive growth of data volume and ever-increasing diversity of data modalities, cross-modal similarity search, which conducts nearest neighbor search across different modalities, has been attracting increasing interest. This paper presents a deep compact code learning solution for efficient cross-modal similarity search. Many recent studies have proven that quantization-based approaches perform generally better than hashing-based approaches on single-modal similarity search. In this paper, we propose a deep quantization approach, which is among the early attempts of leveraging deep neural networks into quantization-based cross-modal similarity search. Our approach, dubbed shared predictive deep quantization (SPDQ), explicitly formulates a shared subspace across different modalities and two private subspaces for individual modalities, and representations in the shared subspace and the private subspaces are learned simultaneously by embedding them to a reproducing kernel Hilbert space, where the mean embedding of different modality distributions can be explicitly compared. In addition, in the shared subspace, a quantizer is learned to produce the semantics preserving compact codes with the help of label alignment. Thanks to this novel network architecture in cooperation with supervised quantization training, SPDQ can preserve intramodal and intermodal similarities as much as possible and greatly reduce quantization error. Experiments on two popular benchmarks corroborate that our approach outperforms state-of-the-art methods

    Online Hashing

    Full text link
    Although hash function learning algorithms have achieved great success in recent years, most existing hash models are off-line, which are not suitable for processing sequential or online data. To address this problem, this work proposes an online hash model to accommodate data coming in stream for online learning. Specifically, a new loss function is proposed to measure the similarity loss between a pair of data samples in hamming space. Then, a structured hash model is derived and optimized in a passive-aggressive way. Theoretical analysis on the upper bound of the cumulative loss for the proposed online hash model is provided. Furthermore, we extend our online hashing from a single-model to a multi-model online hashing that trains multiple models so as to retain diverse online hashing models in order to avoid biased update. The competitive efficiency and effectiveness of the proposed online hash models are verified through extensive experiments on several large-scale datasets as compared to related hashing methods.Comment: To appear in IEEE Transactions on Neural Networks and Learning Systems (DOI: 10.1109/TNNLS.2017.2689242

    A New Evaluation Protocol and Benchmarking Results for Extendable Cross-media Retrieval

    Full text link
    This paper proposes a new evaluation protocol for cross-media retrieval which better fits the real-word applications. Both image-text and text-image retrieval modes are considered. Traditionally, class labels in the training and testing sets are identical. That is, it is usually assumed that the query falls into some pre-defined classes. However, in practice, the content of a query image/text may vary extensively, and the retrieval system does not necessarily know in advance the class label of a query. Considering the inconsistency between the real-world applications and laboratory assumptions, we think that the existing protocol that works under identical train/test classes can be modified and improved. This work is dedicated to addressing this problem by considering the protocol under an extendable scenario, \ie, the training and testing classes do not overlap. We provide extensive benchmarking results obtained by the existing protocol and the proposed new protocol on several commonly used datasets. We demonstrate a noticeable performance drop when the testing classes are unseen during training. Additionally, a trivial solution, \ie, directly using the predicted class label for cross-media retrieval, is tested. We show that the trivial solution is very competitive in traditional non-extendable retrieval, but becomes less so under the new settings. The train/test split, evaluation code, and benchmarking results are publicly available on our website.Comment: 10 pages, 9 figure

    Deep Cross-Modal Hashing

    Full text link
    Due to its low storage cost and fast query speed, cross-modal hashing (CMH) has been widely used for similarity search in multimedia retrieval applications. However, almost all existing CMH methods are based on hand-crafted features which might not be optimally compatible with the hash-code learning procedure. As a result, existing CMH methods with handcrafted features may not achieve satisfactory performance. In this paper, we propose a novel cross-modal hashing method, called deep crossmodal hashing (DCMH), by integrating feature learning and hash-code learning into the same framework. DCMH is an end-to-end learning framework with deep neural networks, one for each modality, to perform feature learning from scratch. Experiments on two real datasets with text-image modalities show that DCMH can outperform other baselines to achieve the state-of-the-art performance in cross-modal retrieval applications.Comment: 12 page

    Deep Cross-Modal Correlation Learning for Audio and Lyrics in Music Retrieval

    Full text link
    Little research focuses on cross-modal correlation learning where temporal structures of different data modalities such as audio and lyrics are taken into account. Stemming from the characteristic of temporal structures of music in nature, we are motivated to learn the deep sequential correlation between audio and lyrics. In this work, we propose a deep cross-modal correlation learning architecture involving two-branch deep neural networks for audio modality and text modality (lyrics). Different modality data are converted to the same canonical space where inter modal canonical correlation analysis is utilized as an objective function to calculate the similarity of temporal structures. This is the first study on understanding the correlation between language and music audio through deep architectures for learning the paired temporal correlation of audio and lyrics. Pre-trained Doc2vec model followed by fully-connected layers (fully-connected deep neural network) is used to represent lyrics. Two significant contributions are made in the audio branch, as follows: i) pre-trained CNN followed by fully-connected layers is investigated for representing music audio. ii) We further suggest an end-to-end architecture that simultaneously trains convolutional layers and fully-connected layers to better learn temporal structures of music audio. Particularly, our end-to-end deep architecture contains two properties: simultaneously implementing feature learning and cross-modal correlation learning, and learning joint representation by considering temporal structures. Experimental results, using audio to retrieve lyrics or using lyrics to retrieve audio, verify the effectiveness of the proposed deep correlation learning architectures in cross-modal music retrieval
    corecore