52 research outputs found

    Maximum-order Complexity and Correlation Measures

    Full text link
    We estimate the maximum-order complexity of a binary sequence in terms of its correlation measures. Roughly speaking, we show that any sequence with small correlation measure up to a sufficiently large order kk cannot have very small maximum-order complexity

    Block circulant matrices with circulant blocks, weil sums and mutually unbiased bases, II. The prime power case

    Full text link
    In our previous paper \cite{co1} we have shown that the theory of circulant matrices allows to recover the result that there exists p+1p+1 Mutually Unbiased Bases in dimension pp, pp being an arbitrary prime number. Two orthonormal bases B,B′\mathcal B, \mathcal B' of Cd\mathbb C^d are said mutually unbiased if ∀b∈B,∀b′∈B′\forall b\in \mathcal B, \forall b' \in \mathcal B' one has that ∣b⋅b′∣=1d| b\cdot b'| = \frac{1}{\sqrt d} (b⋅b′b\cdot b' hermitian scalar product in Cd\mathbb C^d). In this paper we show that the theory of block-circulant matrices with circulant blocks allows to show very simply the known result that if d=pnd=p^n (pp a prime number, nn any integer) there exists d+1d+1 mutually Unbiased Bases in Cd\mathbb C^d. Our result relies heavily on an idea of Klimov, Munoz, Romero \cite{klimuro}. As a subproduct we recover properties of quadratic Weil sums for p≥3p\ge 3, which generalizes the fact that in the prime case the quadratic Gauss sums properties follow from our results

    On the ground states of the Bernasconi model

    Full text link
    The ground states of the Bernasconi model are binary +1/-1 sequences of length N with low autocorrelations. We introduce the notion of perfect sequences, binary sequences with one-valued off-peak correlations of minimum amount. If they exist, they are ground states. Using results from the mathematical theory of cyclic difference sets, we specify all values of N for which perfect sequences do exist and how to construct them. For other values of N, we investigate almost perfect sequences, i.e. sequences with two-valued off-peak correlations of minimum amount. Numerical and analytical results support the conjecture that almost perfect sequences do exist for all values of N, but that they are not always ground states. We present a construction for low-energy configurations that works if N is the product of two odd primes.Comment: 12 pages, LaTeX2e; extended content, added references; submitted to J.Phys.

    Optimization Methods for Designing Sequences with Low Autocorrelation Sidelobes

    Full text link
    Unimodular sequences with low autocorrelations are desired in many applications, especially in the area of radar and code-division multiple access (CDMA). In this paper, we propose a new algorithm to design unimodular sequences with low integrated sidelobe level (ISL), which is a widely used measure of the goodness of a sequence's correlation property. The algorithm falls into the general framework of majorization-minimization (MM) algorithms and thus shares the monotonic property of such algorithms. In addition, the algorithm can be implemented via fast Fourier transform (FFT) operations and thus is computationally efficient. Furthermore, after some modifications the algorithm can be adapted to incorporate spectral constraints, which makes the design more flexible. Numerical experiments show that the proposed algorithms outperform existing algorithms in terms of both the quality of designed sequences and the computational complexity
    • …
    corecore