27 research outputs found

    KUPS: constructing datasets of interacting and non-interacting protein pairs with associated attributions

    Get PDF
    KUPS (The University of Kansas Proteomics Service) provides high-quality protein–protein interaction (PPI) data for researchers developing and evaluating computational models for predicting PPIs by allowing users to construct ready-to-use data sets of interacting protein pairs (IPPs), non-interacting protein pairs (NIPs) and associated features. Multiple filters and options allow the user to control the make-up of the IPPs and NIPs as well as the quality of the resultant data sets. Each data set is built from the overall database, which includes 185 446 IPPs and ∼1.5 billion NIPs from five primary databases: IntAct, HPRD, MINT, UniProt and the Gene Ontology. The IPP set can be set to specific model organisms, interaction types and experimental evidence. The NIP set can be generated using four different strategies, which can alleviate biased estimation problems. Lastly, multiple features can be provided for all of the IPP and NIP pairs. Additionally, KUPS provides two benchmark data sets to help researchers compare their algorithms to existing approaches. KUPS is freely available at http://www.ittc.ku.edu/chenlab

    Application of Machine Learning Techniques for Real-time Classification of Sensor Array Data

    Get PDF
    There is a significant need to identify approaches for classifying chemical sensor array data with high success rates that would enhance sensor detection capabilities. The present study attempts to fill this need by investigating six machine learning methods to classify a dataset collected using a chemical sensor array: K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Classification and Regression Trees (CART), Random Forest (RF), Naïve Bayes Classifier (NB), and Principal Component Regression (PCR). A total of 10 predictors that are associated with the response from 10 sensor channels are used to train and test the classifiers. A training dataset of 4 classes containing 136 samples is used to build the classifiers, and a dataset of 4 classes with 56 samples is used for testing. The results generated with the six different methods are compared and discussed. The RF, CART, and KNN are found to have success rates greater than 90%, and to outperform the other methods

    Application of Machine Learning Techniques for Real-time Classification of Sensor Array Data

    Get PDF
    There is a significant need to identify approaches for classifying chemical sensor array data with high success rates that would enhance sensor detection capabilities. The present study attempts to fill this need by investigating six machine learning methods to classify a dataset collected using a chemical sensor array: K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Classification and Regression Trees (CART), Random Forest (RF), Naïve Bayes Classifier (NB), and Principal Component Regression (PCR). A total of 10 predictors that are associated with the response from 10 sensor channels are used to train and test the classifiers. A training dataset of 4 classes containing 136 samples is used to build the classifiers, and a dataset of 4 classes with 56 samples is used for testing. The results generated with the six different methods are compared and discussed. The RF, CART, and KNN are found to have success rates greater than 90%, and to outperform the other methods

    Predicting protein-protein binding sites in membrane proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many integral membrane proteins, like their non-membrane counterparts, form either transient or permanent multi-subunit complexes in order to carry out their biochemical function. Computational methods that provide structural details of these interactions are needed since, despite their importance, relatively few structures of membrane protein complexes are available.</p> <p>Results</p> <p>We present a method for predicting which residues are in protein-protein binding sites within the transmembrane regions of membrane proteins. The method uses a Random Forest classifier trained on residue type distributions and evolutionary conservation for individual surface residues, followed by spatial averaging of the residue scores. The prediction accuracy achieved for membrane proteins is comparable to that for non-membrane proteins. Also, like previous results for non-membrane proteins, the accuracy is significantly higher for residues distant from the binding site boundary. Furthermore, a predictor trained on non-membrane proteins was found to yield poor accuracy on membrane proteins, as expected from the different distribution of surface residue types between the two classes of proteins. Thus, although the same procedure can be used to predict binding sites in membrane and non-membrane proteins, separate predictors trained on each class of proteins are required. Finally, the contribution of each residue property to the overall prediction accuracy is analyzed and prediction examples are discussed.</p> <p>Conclusion</p> <p>Given a membrane protein structure and a multiple alignment of related sequences, the presented method gives a prioritized list of which surface residues participate in intramembrane protein-protein interactions. The method has potential applications in guiding the experimental verification of membrane protein interactions, structure-based drug discovery, and also in constraining the search space for computational methods, such as protein docking or threading, that predict membrane protein complex structures.</p

    Knowledge-guided inference of domain–domain interactions from incomplete protein–protein interaction networks

    Get PDF
    Motivation: Protein-protein interactions (PPIs), though extremely valuable towards a better understanding of protein functions and cellular processes, do not provide any direct information about the regions/domains within the proteins that mediate the interaction. Most often, it is only a fraction of a protein that directly interacts with its biological partners. Thus, understanding interaction at the domain level is a critical step towards (i) thorough understanding of PPI networks; (ii) precise identification of binding sites; (iii) acquisition of insights into the causes of deleterious mutations at interaction sites; and (iv) most importantly, development of drugs to inhibit pathological protein interactions. In addition, knowledge derived from known domain–domain interactions (DDIs) can be used to understand binding interfaces, which in turn can help discover unknown PPIs

    Prediction of protein binding sites in protein structures using hidden Markov support vector machine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Predicting the binding sites between two interacting proteins provides important clues to the function of a protein. Recent research on protein binding site prediction has been mainly based on widely known machine learning techniques, such as artificial neural networks, support vector machines, conditional random field, etc. However, the prediction performance is still too low to be used in practice. It is necessary to explore new algorithms, theories and features to further improve the performance.</p> <p>Results</p> <p>In this study, we introduce a novel machine learning model hidden Markov support vector machine for protein binding site prediction. The model treats the protein binding site prediction as a sequential labelling task based on the maximum margin criterion. Common features derived from protein sequences and structures, including protein sequence profile and residue accessible surface area, are used to train hidden Markov support vector machine. When tested on six data sets, the method based on hidden Markov support vector machine shows better performance than some state-of-the-art methods, including artificial neural networks, support vector machines and conditional random field. Furthermore, its running time is several orders of magnitude shorter than that of the compared methods.</p> <p>Conclusion</p> <p>The improved prediction performance and computational efficiency of the method based on hidden Markov support vector machine can be attributed to the following three factors. Firstly, the relation between labels of neighbouring residues is useful for protein binding site prediction. Secondly, the kernel trick is very advantageous to this field. Thirdly, the complexity of the training step for hidden Markov support vector machine is linear with the number of training samples by using the cutting-plane algorithm.</p

    Automatic structure classification of small proteins using random forest

    Get PDF
    <p>Abstract</p> <p><b>Background</b></p> <p>Random forest, an ensemble based supervised machine learning algorithm, is used to predict the SCOP structural classification for a target structure, based on the similarity of its structural descriptors to those of a template structure with an equal number of secondary structure elements (SSEs). An initial assessment of random forest is carried out for domains consisting of three SSEs. The usability of random forest in classifying larger domains is demonstrated by applying it to domains consisting of four, five and six SSEs.</p> <p><b>Result</b>s</p> <p>Random forest, trained on SCOP version 1.69, achieves a predictive accuracy of up to 94% on an independent and non-overlapping test set derived from SCOP version 1.73. For classification to the SCOP <it>Class, Fold, Super-family </it>or <it>Family </it>levels, the predictive quality of the model in terms of Matthew's correlation coefficient (MCC) ranged from 0.61 to 0.83. As the number of constituent SSEs increases the MCC for classification to different structural levels decreases.</p> <p>Conclusions</p> <p>The utility of random forest in classifying domains from the place-holder classes of SCOP to the true <it>Class, Fold, Super-family </it>or <it>Family </it>levels is demonstrated. Issues such as introduction of a new structural level in SCOP and the merger of singleton levels can also be addressed using random forest. A real-world scenario is mimicked by predicting the classification for those protein structures from the PDB, which are yet to be assigned to the SCOP classification hierarchy.</p

    PPIcons: identification of protein-protein interaction sites in selected organisms

    Get PDF
    The physico-chemical properties of interaction interfaces have a crucial role in characterization of protein–protein interactions (PPI). In silico prediction of participating amino acids helps to identify interface residues for further experimental verification using mutational analysis, or inhibition studies by screening library of ligands against given protein. Given the unbound structure of a protein and the fact that it forms a complex with another known protein, the objective of this work is to identify the residues that are involved in the interaction. We attempt to predict interaction sites in protein complexes using local composition of amino acids together with their physico-chemical characteristics. The local sequence segments (LSS) are dissected from the protein sequences using a sliding window of 21 amino acids. The list of LSSs is passed to the support vector machine (SVM) predictor, which identifies interacting residue pairs considering their inter-atom distances. We have analyzed three different model organisms of Escherichia coli, Saccharomyces Cerevisiae and Homo sapiens, where the numbers of considered hetero-complexes are equal to 40, 123 and 33 respectively. Moreover, the unified multi-organism PPI meta-predictor is also developed under the current work by combining the training databases of above organisms. The PPIcons interface residues prediction method is measured by the area under ROC curve (AUC) equal to 0.82, 0.75, 0.72 and 0.76 for the aforementioned organisms and the meta-predictor respectively. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00894-013-1886-9) contains supplementary material, which is available to authorized users

    Exploring the potential of 3D Zernike descriptors and SVM for protein\u2013protein interface prediction

    Get PDF
    Abstract Background The correct determination of protein–protein interaction interfaces is important for understanding disease mechanisms and for rational drug design. To date, several computational methods for the prediction of protein interfaces have been developed, but the interface prediction problem is still not fully understood. Experimental evidence suggests that the location of binding sites is imprinted in the protein structure, but there are major differences among the interfaces of the various protein types: the characterising properties can vary a lot depending on the interaction type and function. The selection of an optimal set of features characterising the protein interface and the development of an effective method to represent and capture the complex protein recognition patterns are of paramount importance for this task. Results In this work we investigate the potential of a novel local surface descriptor based on 3D Zernike moments for the interface prediction task. Descriptors invariant to roto-translations are extracted from circular patches of the protein surface enriched with physico-chemical properties from the HQI8 amino acid index set, and are used as samples for a binary classification problem. Support Vector Machines are used as a classifier to distinguish interface local surface patches from non-interface ones. The proposed method was validated on 16 classes of proteins extracted from the Protein–Protein Docking Benchmark 5.0 and compared to other state-of-the-art protein interface predictors (SPPIDER, PrISE and NPS-HomPPI). Conclusions The 3D Zernike descriptors are able to capture the similarity among patterns of physico-chemical and biochemical properties mapped on the protein surface arising from the various spatial arrangements of the underlying residues, and their usage can be easily extended to other sets of amino acid properties. The results suggest that the choice of a proper set of features characterising the protein interface is crucial for the interface prediction task, and that optimality strongly depends on the class of proteins whose interface we want to characterise. We postulate that different protein classes should be treated separately and that it is necessary to identify an optimal set of features for each protein class

    Sequence-based identification of interface residues by an integrative profile combining hydrophobic and evolutionary information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interactions play essential roles in protein function determination and drug design. Numerous methods have been proposed to recognize their interaction sites, however, only a small proportion of protein complexes have been successfully resolved due to the high cost. Therefore, it is important to improve the performance for predicting protein interaction sites based on primary sequence alone.</p> <p>Results</p> <p>We propose a new idea to construct an integrative profile for each residue in a protein by combining its hydrophobic and evolutionary information. A support vector machine (SVM) ensemble is then developed, where SVMs train on different pairs of positive (interface sites) and negative (non-interface sites) subsets. The subsets having roughly the same sizes are grouped in the order of accessible surface area change before and after complexation. A self-organizing map (SOM) technique is applied to group similar input vectors to make more accurate the identification of interface residues. An ensemble of ten-SVMs achieves an MCC improvement by around 8% and F1 improvement by around 9% over that of three-SVMs. As expected, SVM ensembles constantly perform better than individual SVMs. In addition, the model by the integrative profiles outperforms that based on the sequence profile or the hydropathy scale alone. As our method uses a small number of features to encode the input vectors, our model is simpler, faster and more accurate than the existing methods.</p> <p>Conclusions</p> <p>The integrative profile by combining hydrophobic and evolutionary information contributes most to the protein-protein interaction prediction. Results show that evolutionary context of residue with respect to hydrophobicity makes better the identification of protein interface residues. In addition, the ensemble of SVM classifiers improves the prediction performance.</p> <p>Availability</p> <p>Datasets and software are available at <url>http://mail.ustc.edu.cn/~bigeagle/BMCBioinfo2010/index.htm</url>.</p
    corecore