4,008 research outputs found

    Neural networks versus Logistic regression for 30 days all-cause readmission prediction

    Full text link
    Heart failure (HF) is one of the leading causes of hospital admissions in the US. Readmission within 30 days after a HF hospitalization is both a recognized indicator for disease progression and a source of considerable financial burden to the healthcare system. Consequently, the identification of patients at risk for readmission is a key step in improving disease management and patient outcome. In this work, we used a large administrative claims dataset to (1)explore the systematic application of neural network-based models versus logistic regression for predicting 30 days all-cause readmission after discharge from a HF admission, and (2)to examine the additive value of patients' hospitalization timelines on prediction performance. Based on data from 272,778 (49% female) patients with a mean (SD) age of 73 years (14) and 343,328 HF admissions (67% of total admissions), we trained and tested our predictive readmission models following a stratified 5-fold cross-validation scheme. Among the deep learning approaches, a recurrent neural network (RNN) combined with conditional random fields (CRF) model (RNNCRF) achieved the best performance in readmission prediction with 0.642 AUC (95% CI, 0.640-0.645). Other models, such as those based on RNN, convolutional neural networks and CRF alone had lower performance, with a non-timeline based model (MLP) performing worst. A competitive model based on logistic regression with LASSO achieved a performance of 0.643 AUC (95%CI, 0.640-0.646). We conclude that data from patient timelines improve 30 day readmission prediction for neural network-based models, that a logistic regression with LASSO has equal performance to the best neural network model and that the use of administrative data result in competitive performance compared to published approaches based on richer clinical datasets

    Prediction of future hospital admissions - what is the tradeoff between specificity and accuracy?

    Full text link
    Large amounts of electronic medical records collected by hospitals across the developed world offer unprecedented possibilities for knowledge discovery using computer based data mining and machine learning. Notwithstanding significant research efforts, the use of this data in the prediction of disease development has largely been disappointing. In this paper we examine in detail a recently proposed method which has in preliminary experiments demonstrated highly promising results on real-world data. We scrutinize the authors' claims that the proposed model is scalable and investigate whether the tradeoff between prediction specificity (i.e. the ability of the model to predict a wide number of different ailments) and accuracy (i.e. the ability of the model to make the correct prediction) is practically viable. Our experiments conducted on a data corpus of nearly 3,000,000 admissions support the authors' expectations and demonstrate that the high prediction accuracy is maintained well even when the number of admission types explicitly included in the model is increased to account for 98% of all admissions in the corpus. Thus several promising directions for future work are highlighted.Comment: In Proc. International Conference on Bioinformatics and Computational Biology, April 201

    Systematic review of hospital readmissions in stroke patients

    Get PDF
    Background Previous evidence on factors and causes of readmissions associated with high-impact users of stroke is scanty. The aim of the study was to investigate common causes and pattern of short- and long-term readmissions stroke patients by conducting a systematic review of studies using hospital administrative data. Common risk factors associated with the change of readmission rate were also examined. Methods The literature search was conducted from 15th February to 15th March 2016 using various databases, such as Medline, Embase, and Web of Science. Results There were total of 24 studies (n=2,126,617) included in the review. Only 4 studies assessed causes of readmissions in stroke patients with the follow-up duration from 30 days to 5 years. Common causes of readmissions in majority of the studies were recurrent stroke, infections and cardiac conditions. Common patient-related risk factors associated with increased readmission rate were age and history of coronary heart disease, heart failure, renal disease, respiratory disease, peripheral arterial disease and diabetes. Among stroke-related factors, length of stay of index stroke admission was associated with increased readmission rate, followed by bowel incontinence, feeding tube and urinary catheter. Conclusion Although risk factors and common causes of readmission were identified, but none of the previous studies investigated causes and their sequence of readmissions among high-impact stroke users

    Predicting Unplanned Hospital Readmissions using Patient Level Data

    Get PDF
    The rate of unplanned hospital readmissions in the US is likely to face a steady rise after 2020. Hence, this issue has received considerable critical attention with the policy makers. Majority of hospitals in the US pay millions of dollars as penalty for readmitting patients within 30 days due to strict norms imposed by the Hospital Readmission Reduction Program. In this study, we develop two novel models: PURE (Predicting Unplanned Readmissions using Embeddings) and Hybrid DeepR, which uses the historical medical events of patients to predict readmissions within 30 days. Both these models are hybrid sequence models that leverage both sequential events (history of events) and static features (like gender, blood pressure) of the patients to mine patterns in the data. Our results are promising, and they benchmark previous results in predicting hospital readmissions. The contributions of this study add to existing literature on healthcare analytics

    Deepr: A Convolutional Net for Medical Records

    Full text link
    Feature engineering remains a major bottleneck when creating predictive systems from electronic medical records. At present, an important missing element is detecting predictive regular clinical motifs from irregular episodic records. We present Deepr (short for Deep record), a new end-to-end deep learning system that learns to extract features from medical records and predicts future risk automatically. Deepr transforms a record into a sequence of discrete elements separated by coded time gaps and hospital transfers. On top of the sequence is a convolutional neural net that detects and combines predictive local clinical motifs to stratify the risk. Deepr permits transparent inspection and visualization of its inner working. We validate Deepr on hospital data to predict unplanned readmission after discharge. Deepr achieves superior accuracy compared to traditional techniques, detects meaningful clinical motifs, and uncovers the underlying structure of the disease and intervention space
    corecore