1,597,139 research outputs found
Hybrid Membrane-Distillation Separation Processes
A novel synthesis approach is developed to evaluate and optimise various hybrid membrane-distillation schemes. The problem is formulated as an optimisation problem, where the objective is to minimise the total operating cost of the separation scheme. Interactions between the separation and refrigeration systems are considered and opportunities for heat integration are exploited. A case study, ethylene/ethane separation, is presented to demonstrate the synthesis approach. Schemes that apply a membrane in parallel to and in series with a distillation column are explored. Shortcut models that account for multiple feeds and products are used to represent the distillation column. The distillation model predictions are shown to be in good agreement with results of more rigorous simulations carried out using HYSYS. Established membrane models (Shindo et al., 1985) are applied and shown to be valid for the system of interest. A systematic approach is developed to account for heat recovery between: i) column feeds and products; ii) the membrane feed and products and iii) the associated refrigeration system. The optimisation results reveal that a facilitated transport membrane reported in the literature (Pinnau and Toy, 2001) used in parallel with a distillation column can reduce the condenser duty by about 33 %, compared to a conventional distillation column operating at the same pressure (20 bar). However, recompression and sub-ambient cooling are required for the permeate stream, incurring operating costs. The total operating cost of the heat-integrated parallel hybrid scheme may be reduced by 11 %, compared to a conventional distillation column.
Phase separation processes in polymer solutions in relation to membrane formation
This review covers new experimental and theoretical physical research related to the formation of polymeric membranes by phase separation of a polymer solution, and to the morphology of these membranes. Two main phase separation processes for polymeric membrane formation are discussed: thermally induced phase separation and immersion precipitation. Special attention is paid to phase transitions like liquid-liquid demixing, crystallization, gelation, and vitrification, and their relation to membrane morphology. In addition, the mass transfer processes involved in immersion precipitation, and their influence on membrane morphology are discussed
Optimum electrode configurations for fast ion separation in microfabricated surface ion traps
For many quantum information implementations with trapped ions, effective
shuttling operations are important. Here we discuss the efficient separation
and recombination of ions in surface ion trap geometries. The maximum speed of
separation and recombination of trapped ions for adiabatic shuttling operations
depends on the secular frequencies the trapped ion experiences in the process.
Higher secular frequencies during the transportation processes can be achieved
by optimising trap geometries. We show how two different arrangements of
segmented static potential electrodes in surface ion traps can be optimised for
fast ion separation or recombination processes. We also solve the equations of
motion for the ion dynamics during the separation process and illustrate
important considerations that need to be taken into account to make the process
adiabatic
From colloidal dispersions to colloidal pastesthrough solid–liquid separation processes
Solid–liquid separation is an operation that starts with a dispersion of solid particles in a liquid and removes some of the liquid from the particles, producing a concentrated
solid paste and a clean liquid phase. It is similar to thermodynamic processes where pressure is applied to a system in order to reduce its volume. In dispersions, the resistance to this osmotic compression depends on interactions between the dispersed particles.
The first part of this work deals with dispersions of repelling particles, which are either silica nanoparticles or synthetic clay platelets, dispersed in aqueous solutions. In these conditions, each particle is surrounded by an ionic layer, which repels other ionic layers. This results in a structure with strong short-range order. At high particle volume fractions, the overlap
of ionic layers generates large osmotic pressures; these pressures may be calculated, through the cell model, as the cost of reducing the volume of each cell. The variation of osmotic pressure with volume fraction is the equation of state of the dispersion.
The second part of this work deals with dispersions of aggregated particles, which are silica nanoparticles, dispersed in water and flocculated by multivalent cations. This produces large bushy aggregates, with fractal structures that are maintained through interparticle surface– surface bonds. As the paste is submitted to osmotic pressures, small relative displacements
of the aggregated particles lead to structural collapse. The final structure is made of a dense skeleton immersed in a nearly homogeneous matrix of aggregated particles. The variation of osmotic resistance with volume fraction is the compression law of the paste; it may be calculated through a numerical model that takes into account the noncentral interparticle forces. According to this model, the response of aggregated pastes to applied stress may be
controlled through the manipulation of interparticle adhesion
A multi-objective genetic algorithm for the design of pressure swing adsorption
Pressure Swing Adsorption (PSA) is a cyclic separation process, more advantageous over other separation options for middle scale processes. Automated tools for the design of PSA
processes would be beneficial for the development of the technology, but their development is
a difficult task due to the complexity of the simulation of PSA cycles and the computational
effort needed to detect the performance at cyclic steady state.
We present a preliminary investigation of the performance of a custom multi-objective genetic
algorithm (MOGA) for the optimisation of a fast cycle PSA operation, the separation of
air for N2 production. The simulation requires a detailed diffusion model, which involves coupled
nonlinear partial differential and algebraic equations (PDAEs). The efficiency of MOGA
to handle this complex problem has been assessed by comparison with direct search methods.
An analysis of the effect of MOGA parameters on the performance is also presented
Phase Separation Driven by External Fluctuations
The influence of external fluctuations in phase separation processes is
analysed. These fluctuations arise from random variations of an external
control parameter. A linear stability analysis of the homogeneous state shows
that phase separation dynamics can be induced by external noise. The spatial
structure of the noise is found to have a relevant role in this phenomenon.
Numerical simulations confirm these results. A comparison with order-disorder
noise induced phase transitions is also made.Comment: 4 pages, 4 Postscript figures included in text. LaTeX (with Revtex
macros
Applications of impedance spectroscopy in thermoelectricity
t is widely used in a lot of different fields (solar cells, fuel cells, corrosion, supercapacitors, batteries, etc.). • Powerful and very reliable equipment are available in the market. • It allows the separation of the physical processes occurring in a device
- …
