3 research outputs found

    Sparse Selfreducible Sets and Nonuniform Lower Bounds

    Get PDF
    It is well-known that the class of sets that can be computed by polynomial size circuits is equal to the class of sets that are polynomial time reducible to a sparse set. It is widely believed, but unfortunately up to now unproven, that there are sets in (Formula presented.), or even in (Formula presented.) that are not computable by polynomial size circuits and hence are not reducible to a sparse set. In this paper we study this question in a more restricted setting: what is the computational complexity of sparse sets that are selfreducible? It follows from earlier work of Lozano and Torán (in: Mathematical systems theory, 1991) that (Formula presented.) does not have sparse selfreducible hard sets. We define a natural version of selfreduction, tree-selfreducibility, and show that (Formula presented.) does not have sparse tree-selfreducible hard sets. We also construct an oracle relative to which all of (Formula presented.) is reducible to a sparse tree-selfreducible set. These lower bounds are corollaries of more general results about the computational complexity of sparse sets that are selfreducible, and can be interpreted as super-polynomial circuit lower bounds for (Formula presented.)

    Separating the Notions of Self- and Autoreducibility

    No full text
    Recently Gla{\ss}er et al. have shown that for many classes CC including PSPACE and NP it holds that all of its nontrivial many-one complete languages are autoreducible. This immediately raises the question of whether all many-one complete languages are Turing self-reducible for such classes CC. This paper considers a simpler version of this question---whether all PSPACE-complete NP-complete languages are length-decreasing self-reducible. We show that if all PSPACE-complete languages are length-decreasing self-reducible then PSPACE = P and that if all NP-complete languages are length-decreasing self-reducible then NP = P. The same type of result holds for many other natural complexity classes. In particular, we show that (1) not all NL-complete sets are logspace length-decreasing self-reducible, (2) unconditionally not all PSPACE-complete languages are logspace length-decreasing self-reducible, and (3) unconditionally not all EXP-complete languages are polynomial-time length-decreasing self-reducible
    corecore