7 research outputs found

    Optimal Local and Remote Controllers with Unreliable Communication

    Full text link
    We consider a decentralized optimal control problem for a linear plant controlled by two controllers, a local controller and a remote controller. The local controller directly observes the state of the plant and can inform the remote controller of the plant state through a packet-drop channel. We assume that the remote controller is able to send acknowledgments to the local controller to signal the successful receipt of transmitted packets. The objective of the two controllers is to cooperatively minimize a quadratic performance cost. We provide a dynamic program for this decentralized control problem using the common information approach. Although our problem is not a partially nested LQG problem, we obtain explicit optimal strategies for the two controllers. In the optimal strategies, both controllers compute a common estimate of the plant state based on the common information. The remote controller's action is linear in the common estimated state, and the local controller's action is linear in both the actual state and the common estimated state

    Zero-Delay Rate Distortion via Filtering for Vector-Valued Gaussian Sources

    Full text link
    We deal with zero-delay source coding of a vector-valued Gauss-Markov source subject to a mean-squared error (MSE) fidelity criterion characterized by the operational zero-delay vector-valued Gaussian rate distortion function (RDF). We address this problem by considering the nonanticipative RDF (NRDF) which is a lower bound to the causal optimal performance theoretically attainable (OPTA) function and operational zero-delay RDF. We recall the realization that corresponds to the optimal "test-channel" of the Gaussian NRDF, when considering a vector Gauss-Markov source subject to a MSE distortion in the finite time horizon. Then, we introduce sufficient conditions to show existence of solution for this problem in the infinite time horizon. For the asymptotic regime, we use the asymptotic characterization of the Gaussian NRDF to provide a new equivalent realization scheme with feedback which is characterized by a resource allocation (reverse-waterfilling) problem across the dimension of the vector source. We leverage the new realization to derive a predictive coding scheme via lattice quantization with subtractive dither and joint memoryless entropy coding. This coding scheme offers an upper bound to the operational zero-delay vector-valued Gaussian RDF. When we use scalar quantization, then for "r" active dimensions of the vector Gauss-Markov source the gap between the obtained lower and theoretical upper bounds is less than or equal to 0.254r + 1 bits/vector. We further show that it is possible when we use vector quantization, and assume infinite dimensional Gauss-Markov sources to make the previous gap to be negligible, i.e., Gaussian NRDF approximates the operational zero-delay Gaussian RDF. We also extend our results to vector-valued Gaussian sources of any finite memory under mild conditions. Our theoretical framework is demonstrated with illustrative numerical experiments.Comment: 32 pages, 9 figures, published in IEEE Journal of Selected Topics in Signal Processin

    Trade-offs Between Performance, Data Rate and Transmission Delay in Networked Control Systems

    Get PDF
    corecore