6,280 research outputs found

    End-to-End Multi-View Networks for Text Classification

    Full text link
    We propose a multi-view network for text classification. Our method automatically creates various views of its input text, each taking the form of soft attention weights that distribute the classifier's focus among a set of base features. For a bag-of-words representation, each view focuses on a different subset of the text's words. Aggregating many such views results in a more discriminative and robust representation. Through a novel architecture that both stacks and concatenates views, we produce a network that emphasizes both depth and width, allowing training to converge quickly. Using our multi-view architecture, we establish new state-of-the-art accuracies on two benchmark tasks.Comment: 6 page

    Image-based Text Classification using 2D Convolutional Neural Networks

    Get PDF
    We propose a new approach to text classification in which we consider the input text as an image and apply 2D Convolutional Neural Networks to learn the local and global semantics of the sentences from the variations of the visual patterns of words. Our approach demonstrates that it is possible to get semantically meaningful features from images with text without using optical character recognition and sequential processing pipelines, techniques that traditional natural language processing algorithms require. To validate our approach, we present results for two applications: text classification and dialog modeling. Using a 2D Convolutional Neural Network, we were able to outperform the state-ofart accuracy results for a Chinese text classification task and achieved promising results for seven English text classification tasks. Furthermore, our approach outperformed the memory networks without match types when using out of vocabulary entities from Task 4 of the bAbI dialog dataset

    Modelling, Visualising and Summarising Documents with a Single Convolutional Neural Network

    Full text link
    Capturing the compositional process which maps the meaning of words to that of documents is a central challenge for researchers in Natural Language Processing and Information Retrieval. We introduce a model that is able to represent the meaning of documents by embedding them in a low dimensional vector space, while preserving distinctions of word and sentence order crucial for capturing nuanced semantics. Our model is based on an extended Dynamic Convolution Neural Network, which learns convolution filters at both the sentence and document level, hierarchically learning to capture and compose low level lexical features into high level semantic concepts. We demonstrate the effectiveness of this model on a range of document modelling tasks, achieving strong results with no feature engineering and with a more compact model. Inspired by recent advances in visualising deep convolution networks for computer vision, we present a novel visualisation technique for our document networks which not only provides insight into their learning process, but also can be interpreted to produce a compelling automatic summarisation system for texts
    • …
    corecore