18,849 research outputs found

    ReOnto: A Neuro-Symbolic Approach for Biomedical Relation Extraction

    Full text link
    Relation Extraction (RE) is the task of extracting semantic relationships between entities in a sentence and aligning them to relations defined in a vocabulary, which is generally in the form of a Knowledge Graph (KG) or an ontology. Various approaches have been proposed so far to address this task. However, applying these techniques to biomedical text often yields unsatisfactory results because it is hard to infer relations directly from sentences due to the nature of the biomedical relations. To address these issues, we present a novel technique called ReOnto, that makes use of neuro symbolic knowledge for the RE task. ReOnto employs a graph neural network to acquire the sentence representation and leverages publicly accessible ontologies as prior knowledge to identify the sentential relation between two entities. The approach involves extracting the relation path between the two entities from the ontology. We evaluate the effect of using symbolic knowledge from ontologies with graph neural networks. Experimental results on two public biomedical datasets, BioRel and ADE, show that our method outperforms all the baselines (approximately by 3\%).Comment: Accepted in ECML 202

    Graph Neural Networks with Generated Parameters for Relation Extraction

    Full text link
    Recently, progress has been made towards improving relational reasoning in machine learning field. Among existing models, graph neural networks (GNNs) is one of the most effective approaches for multi-hop relational reasoning. In fact, multi-hop relational reasoning is indispensable in many natural language processing tasks such as relation extraction. In this paper, we propose to generate the parameters of graph neural networks (GP-GNNs) according to natural language sentences, which enables GNNs to process relational reasoning on unstructured text inputs. We verify GP-GNNs in relation extraction from text. Experimental results on a human-annotated dataset and two distantly supervised datasets show that our model achieves significant improvements compared to baselines. We also perform a qualitative analysis to demonstrate that our model could discover more accurate relations by multi-hop relational reasoning

    Using Neural Networks for Relation Extraction from Biomedical Literature

    Full text link
    Using different sources of information to support automated extracting of relations between biomedical concepts contributes to the development of our understanding of biological systems. The primary comprehensive source of these relations is biomedical literature. Several relation extraction approaches have been proposed to identify relations between concepts in biomedical literature, namely, using neural networks algorithms. The use of multichannel architectures composed of multiple data representations, as in deep neural networks, is leading to state-of-the-art results. The right combination of data representations can eventually lead us to even higher evaluation scores in relation extraction tasks. Thus, biomedical ontologies play a fundamental role by providing semantic and ancestry information about an entity. The incorporation of biomedical ontologies has already been proved to enhance previous state-of-the-art results.Comment: Artificial Neural Networks book (Springer) - Chapter 1

    Jointly Multiple Events Extraction via Attention-based Graph Information Aggregation

    Full text link
    Event extraction is of practical utility in natural language processing. In the real world, it is a common phenomenon that multiple events existing in the same sentence, where extracting them are more difficult than extracting a single event. Previous works on modeling the associations between events by sequential modeling methods suffer a lot from the low efficiency in capturing very long-range dependencies. In this paper, we propose a novel Jointly Multiple Events Extraction (JMEE) framework to jointly extract multiple event triggers and arguments by introducing syntactic shortcut arcs to enhance information flow and attention-based graph convolution networks to model graph information. The experiment results demonstrate that our proposed framework achieves competitive results compared with state-of-the-art methods.Comment: accepted by EMNLP 201
    corecore