102,627 research outputs found
SEE: Syntax-aware Entity Embedding for Neural Relation Extraction
Distant supervised relation extraction is an efficient approach to scale
relation extraction to very large corpora, and has been widely used to find
novel relational facts from plain text. Recent studies on neural relation
extraction have shown great progress on this task via modeling the sentences in
low-dimensional spaces, but seldom considered syntax information to model the
entities. In this paper, we propose to learn syntax-aware entity embedding for
neural relation extraction. First, we encode the context of entities on a
dependency tree as sentence-level entity embedding based on tree-GRU. Then, we
utilize both intra-sentence and inter-sentence attentions to obtain sentence
set-level entity embedding over all sentences containing the focus entity pair.
Finally, we combine both sentence embedding and entity embedding for relation
classification. We conduct experiments on a widely used real-world dataset and
the experimental results show that our model can make full use of all
informative instances and achieve state-of-the-art performance of relation
extraction.Comment: 8 pages, AAAI-201
Exploiting Sentence Embedding for Medical Question Answering
Despite the great success of word embedding, sentence embedding remains a
not-well-solved problem. In this paper, we present a supervised learning
framework to exploit sentence embedding for the medical question answering
task. The learning framework consists of two main parts: 1) a sentence
embedding producing module, and 2) a scoring module. The former is developed
with contextual self-attention and multi-scale techniques to encode a sentence
into an embedding tensor. This module is shortly called Contextual
self-Attention Multi-scale Sentence Embedding (CAMSE). The latter employs two
scoring strategies: Semantic Matching Scoring (SMS) and Semantic Association
Scoring (SAS). SMS measures similarity while SAS captures association between
sentence pairs: a medical question concatenated with a candidate choice, and a
piece of corresponding supportive evidence. The proposed framework is examined
by two Medical Question Answering(MedicalQA) datasets which are collected from
real-world applications: medical exam and clinical diagnosis based on
electronic medical records (EMR). The comparison results show that our proposed
framework achieved significant improvements compared to competitive baseline
approaches. Additionally, a series of controlled experiments are also conducted
to illustrate that the multi-scale strategy and the contextual self-attention
layer play important roles for producing effective sentence embedding, and the
two kinds of scoring strategies are highly complementary to each other for
question answering problems.Comment: 8 page
Jointly Modeling Embedding and Translation to Bridge Video and Language
Automatically describing video content with natural language is a fundamental
challenge of multimedia. Recurrent Neural Networks (RNN), which models sequence
dynamics, has attracted increasing attention on visual interpretation. However,
most existing approaches generate a word locally with given previous words and
the visual content, while the relationship between sentence semantics and
visual content is not holistically exploited. As a result, the generated
sentences may be contextually correct but the semantics (e.g., subjects, verbs
or objects) are not true.
This paper presents a novel unified framework, named Long Short-Term Memory
with visual-semantic Embedding (LSTM-E), which can simultaneously explore the
learning of LSTM and visual-semantic embedding. The former aims to locally
maximize the probability of generating the next word given previous words and
visual content, while the latter is to create a visual-semantic embedding space
for enforcing the relationship between the semantics of the entire sentence and
visual content. Our proposed LSTM-E consists of three components: a 2-D and/or
3-D deep convolutional neural networks for learning powerful video
representation, a deep RNN for generating sentences, and a joint embedding
model for exploring the relationships between visual content and sentence
semantics. The experiments on YouTube2Text dataset show that our proposed
LSTM-E achieves to-date the best reported performance in generating natural
sentences: 45.3% and 31.0% in terms of BLEU@4 and METEOR, respectively. We also
demonstrate that LSTM-E is superior in predicting Subject-Verb-Object (SVO)
triplets to several state-of-the-art techniques
- …
