5,137 research outputs found

    A Systematic Literature Review of Experiments in Socially Assistive Robotics using Humanoid Robots

    Full text link
    We perform a Systematic Literature Review to discover how Humanoid robots are being applied in Socially Assistive Robotics experiments. Our search returned 24 papers, from which 16 were included for closer analysis. To do this analysis we used a conceptual framework inspired by Behavior-based Robotics. We were interested in finding out which robot was used (most use the robot NAO), what the goals of the application were (teaching, assisting, playing, instructing), how the robot was controlled (manually in most of the experiments), what kind of behaviors the robot exhibited (reacting to touch, pointing at body parts, singing a song, dancing, among others), what kind of actuators the robot used (always motors, sometimes speakers, hardly ever any other type of actuator) and what kind of sensors the robot used (in many studies the robot did not use any sensors at all, in others the robot frequently used camera and/or microphone). The results of this study can be used for designing software frameworks targeting Humanoid Socially Assistive Robotics, especially in the context of Software Product Line Engineering projects

    Humanoid TeenSize Open Platform NimbRo-OP

    Full text link
    In recent years, the introduction of affordable platforms in the KidSize class of the Humanoid League has had a positive impact on the performance of soccer robots. The lack of readily available larger robots, however, severely affects the number of participants in Teen- and AdultSize and consequently the progress of research that focuses on the challenges arising with robots of larger weight and size. This paper presents the first hardware release of a low cost Humanoid TeenSize open platform for research, the first software release, and the current state of ROS-based software development. The NimbRo-OP robot was designed to be easily manufactured, assembled, repaired, and modified. It is equipped with a wide-angle camera, ample computing power, and enough torque to enable full-body motions, such as dynamic bipedal locomotion, kicking, and getting up.Comment: Proceedings of 17th RoboCup International Symposium, Eindhoven, Netherlands, 201

    NimbRo-OP2X: Adult-sized Open-source 3D Printed Humanoid Robot

    Full text link
    Humanoid robotics research depends on capable robot platforms, but recently developed advanced platforms are often not available to other research groups, expensive, dangerous to operate, or closed-source. The lack of available platforms forces researchers to work with smaller robots, which have less strict dynamic constraints or with simulations, which lack many real-world effects. We developed NimbRo-OP2X to address this need. At a height of 135 cm our robot is large enough to interact in a human environment. Its low weight of only 19 kg makes the operation of the robot safe and easy, as no special operational equipment is necessary. Our robot is equipped with a fast onboard computer and a GPU to accelerate parallel computations. We extend our already open-source software by a deep-learning based vision system and gait parameter optimisation. The NimbRo-OP2X was evaluated during RoboCup 2018 in Montr\'eal, Canada, where it won all possible awards in the Humanoid AdultSize class.Comment: International Conference on Humanoid Robots (Humanoids), Beijing, China, 201

    Dynamic Locomotion For Passive-Ankle Biped Robots And Humanoids Using Whole-Body Locomotion Control

    Full text link
    Whole-body control (WBC) is a generic task-oriented control method for feedback control of loco-manipulation behaviors in humanoid robots. The combination of WBC and model-based walking controllers has been widely utilized in various humanoid robots. However, to date, the WBC method has not been employed for unsupported passive-ankle dynamic locomotion. As such, in this paper, we devise a new WBC, dubbed whole-body locomotion controller (WBLC), that can achieve experimental dynamic walking on unsupported passive-ankle biped robots. A key aspect of WBLC is the relaxation of contact constraints such that the control commands produce reduced jerk when switching foot contacts. To achieve robust dynamic locomotion, we conduct an in-depth analysis of uncertainty for our dynamic walking algorithm called time-to-velocity-reversal (TVR) planner. The uncertainty study is fundamental as it allows us to improve the control algorithms and mechanical structure of our robot to fulfill the tolerated uncertainty. In addition, we conduct extensive experimentation for: 1) unsupported dynamic balancing (i.e. in-place stepping) with a six degree-of-freedom (DoF) biped, Mercury; 2) unsupported directional walking with Mercury; 3) walking over an irregular and slippery terrain with Mercury; and 4) in-place walking with our newly designed ten-DoF viscoelastic liquid-cooled biped, DRACO. Overall, the main contributions of this work are on: a) achieving various modalities of unsupported dynamic locomotion of passive-ankle bipeds using a WBLC controller and a TVR planner, b) conducting an uncertainty analysis to improve the mechanical structure and the controllers of Mercury, and c) devising a whole-body control strategy that reduces movement jerk during walking

    Investigations of a Robotic Testbed with Viscoelastic Liquid Cooled Actuators

    Full text link
    We design, build, and thoroughly test a new type of actuator dubbed viscoelastic liquid cooled actuator (VLCA) for robotic applications. VLCAs excel in the following five critical axes of performance: energy efficiency, torque density, impact resistence, joint position and force controllability. We first study the design objectives and choices of the VLCA to enhance the performance on the needed criteria. We follow by an investigation on viscoelastic materials in terms of their damping, viscous and hysteresis properties as well as parameters related to the long- term performance. As part of the actuator design, we configure a disturbance observer to provide high-fidelity force control to enable a wide range of impedance control capabilities. We proceed to design a robotic system capable to lift payloads of 32.5 kg, which is three times larger than its own weight. In addition, we experiment with Cartesian trajectory control up to 2 Hz with a vertical range of motion of 32 cm while carrying a payload of 10 kg. Finally, we perform experiments on impedance control and mechanical robustness by studying the response of the robotics testbed to hammering impacts and external force interactions.Comment: 11 pages, 10 figure

    Assessing Whole-Body Operational Space Control in a Point-Foot Series Elastic Biped: Balance on Split Terrain and Undirected Walking

    Full text link
    In this paper we present advancements in control and trajectory generation for agile behavior in bipedal robots. We demonstrate that Whole-Body Operational Space Control (WBOSC), developed a few years ago, is well suited for achieving two types of agile behaviors, namely, balancing on a high pitch split terrain and achieving undirected walking on flat terrain. The work presented here is the first implementation of WBOSC on a biped robot, and more specifically a biped robot with series elastic actuators. We present and analyze a new algorithm that dynamically balances point foot robots by choosing footstep placements. Dealing with the naturally unstable dynamics of these type of systems is a difficult problem that requires both the controller and the trajectory generation algorithm to operate quickly and efficiently. We put forth a comprehensive development and integration effort: the design and construction of the biped system and experimental infrastructure, a customization of WBOSC for the agile behaviors, and new trajectory generation algorithms. Using this custom built controller, we conduct, for first time, an experiment in which a biped robot balances in a high pitch split terrain, demonstrating our ability to precisely regulate internal forces using force sensing feedback techniques. Finally, we demonstrate the stabilizing capabilities of our online trajectory generation algorithm in the physics-based simulator and through physical experiments with a planarized locomotion setup.Comment: 17 pages, 9 figures, 4 table

    Robots as Powerful Allies for the Study of Embodied Cognition from the Bottom Up

    Full text link
    A large body of compelling evidence has been accumulated demonstrating that embodiment - the agent's physical setup, including its shape, materials, sensors and actuators - is constitutive for any form of cognition and as a consequence, models of cognition need to be embodied. In contrast to methods from empirical sciences to study cognition, robots can be freely manipulated and virtually all key variables of their embodiment and control programs can be systematically varied. As such, they provide an extremely powerful tool of investigation. We present a robotic bottom-up or developmental approach, focusing on three stages: (a) low-level behaviors like walking and reflexes, (b) learning regularities in sensorimotor spaces, and (c) human-like cognition. We also show that robotic based research is not only a productive path to deepening our understanding of cognition, but that robots can strongly benefit from human-like cognition in order to become more autonomous, robust, resilient, and safe.Comment: 22 pages, 3 figure

    Modeling and Analysis of Walking Pattern for a Biped Robot

    Full text link
    This paper addresses the design and development of an autonomous biped robot using master and worker combination of controllers. In addition, the bot is wirelessly controllable. The work presented here explains the walking pattern, system control and actuator control techniques for 10 Degree of Freedom (DOF) biped humanoid. Bi-pedal robots have better mobility than conventional wheeled robots, but they tend to topple easily. In order to walk stably in various environments, such as on rough terrain, up and down slopes, or in regions containing obstacles, it is necessary, that robot should adapt to the ground conditions with a foot motion, as well as maintain its stability with a torso motion. It is desirable to select a walking pattern that requires small torque and velocity of the joint actuators. The work proposed a low cost solution using open source hardware-software and application. The work extends to develop and implement new algorithms by adding gyroscope and accelerometer to further the research in the field of biped robots

    Wait for me! Towards socially assistive walk companions

    Full text link
    The aim of the present study involves designing a humanoid robot guide as a walking trainer for elderly and rehabilitation patients. The system is based on the humanoid robot Pepper with a compliance approach that allows to match the motion intention of the user to the robot's pace. This feasibility study is backed up by an experimental evaluation conducted in a rehabilitation centre. We hypothesize that Pepper robot used as an assistive partner, can also benefit elderly users by motivating them to perform physical activity.Comment: 2nd Workshop on Social Robots in Therapy and Care. 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI 2019

    NimbRo-OP2: Grown-up 3D Printed Open Humanoid Platform for Research

    Full text link
    The versatility of humanoid robots in locomotion, full-body motion, interaction with unmodified human environments, and intuitive human-robot interaction led to increased research interest. Multiple smaller platforms are available for research, but these require a miniaturized environment to interact with---and often the small scale of the robot diminishes the influence of factors which would have affected larger robots. Unfortunately, many research platforms in the larger size range are less affordable, more difficult to operate, maintain and modify, and very often closed-source. In this work, we introduce NimbRo-OP2X, an affordable, fully open-source platform in terms of both hardware and software. Being almost 135cm tall and only 18kg in weight, the robot is not only capable of interacting in an environment meant for humans, but also easy and safe to operate and does not require a gantry when doing so. The exoskeleton of the robot is 3D printed, which produces a lightweight and visually appealing design. We present all mechanical and electrical aspects of the robot, as well as some of the software features of our well-established open-source ROS software. The NimbRo-OP2X performed at RoboCup 2017 in Nagoya, Japan, where it won the Humanoid League AdultSize Soccer competition and Technical Challenge.Comment: International Conference on Humanoid Robots (Humanoids), Birmingham, England, 201
    • …
    corecore